Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Baylor researchers unravel mystery of DNA conformation

15.07.2009
An iconic photograph (http://img.timeinc.net/time/80days/images/530228.jpg) of Nobel laureates Drs. Francis Crick and James Watson show the pair discussing with a rigid model of the famous double helix.

The interaction represented produced the famous explanation of the structure of DNA, but the model pictured is a stiff snapshot of idealized DNA.

As researchers from Baylor College of Medicine (www.bcm.edu) and the University of Houston (www.uh.edu) note in a report that appears online in the journal Nucleic Acids Research, DNA is not a stiff or static. It is dynamic with high energy. It exists naturally in a slightly underwound state and its status changes in waves generated by normal cell functions such as DNA replication, transcription, repair and recombination. DNA is also accompanied by a cloud of counterions (charged particles that neutralize the genetic material's very negative charge) and, of course, the protein macromolecules that affect DNA activity.

"Many models and experiments have been interpreted with the static model," said Dr. Lynn Zechiedrich (http://www.bcm.edu/molvir/faculty/elz.htm), associate professor of molecular virology and microbiology at BCM and a senior author of the report. "But this model does not allow for the fact that DNA in real life is transiently underwound and overwound in its natural state."

DNA appears a perfect spring that can be stretched and then spring back to its original conformation. How far can you stretch it before something happens to the structure and it cannot bounce back? What happens when it is exposed to normal cellular stresses involved in doing its job? That was the problem that Zechiedrich and her colleagues tackled.

Their results also addresses a question posed by another Nobel laureate, the late Dr. Linus Pauling, who asked how the information encoded by the bases could be read if it is sequestered inside the DNA molecular with phosphate molecules on the outside.

It's easy to explain when the cell divides because the double-stranded DNA also divides at the behest of a special enzyme, making its genetic code readily readable.

"Many cellular activities, however, do not involve the separation of the two strands of DNA," said Zechiedrich.

To unravel the problem, former graduate student, Dr. Graham L. Randall, mentored jointly by Zechiedrich and Dr. B. Montgomery Pettitt (http://www.chem.uh.edu/Faculty/Pettitt/Research/) of UH, simulated 19 independent DNA systems with fixed degrees of underwinding or overwinding, using a special computer analysis started by Petttitt.

They found that when DNA is underwound in the same manner that you might underwind a spring, the forces induce one of two bases – adenine or thymine – to "flip out" of the sequence, thus relieving the stress that the molecule experiences.

"It always happens in the underwound state," said Zechiedrich. "We wanted to know if torsional stress was the force that accounted for the base flipping that others have seen occur, but for which we had no idea where the energy was supplied to do this very big job."

When the base flips out, it relieves the stress on the DNA, which then relaxes the rest of the DNA not involved in the base flipping back to its "perfect spring" state.

When the molecule is overwound, it assumes a "Pauling-like DNA" state in which the DNA turns itself inside out to expose the bases -- much in the way Pauling had predicted.

Zechiedrich and her colleagues theorize that the base flipping, denaturation, and Pauling-like DNA caused by under- and overwinding allows DNA to interact with proteins during processes such as replication, transcription and recombination and allows the code to be read. And back to the idea of the "perfect spring" behavior of the DNA helix - "This notion is entirely wrong," said Zechiedrich. "Underwinding is not equal and opposite to overwinding, as predicted, not by a long shot, that's really a cool result that Graham got."

Support for this work came from the Robert A. Welch Foundation, the National Institutes of Health and the Keck Center for Interdisciplinary Bioscience Training of the Gulf Coast Consortia. The computations were performed in part using the Teragrid and the Molecular Science Computing 85 Facility in the William R. Wiley Environmental Molecular Sciences Laboratory, sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory.

Glenna Picton | EurekAlert!
Further information:
http://www.bcm.edu/news
http://www.bcm.edu/fromthelab

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>