Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacterial Nanosized Speargun Works Like a Power Drill

26.09.2017

In order to get rid of unpleasant competitors, some bacteria use a sophisticated weapon – a nanosized speargun. Researchers at the University of Basel’s Biozentrum have now gained new insights into the construction, mode of action and recycling of this weapon. As they report in the journal “Nature Microbiology”, the speargun drills a hole into the neighboring cells in only a few thousandths of a second and injects a cocktail of toxins.

Millions of tiny microbes on leaves, stones or our skin jostle for space. And almost everywhere they have to compete for resources and nutrients. In the course of evolution, some bacteria have therefore developed a weapon to inject a toxic cocktail into competitors and rivals in their neighborhood, thus eliminating them. Among experts, this weapon resembling a speargun is also known as the type VI secretion system (T6SS).


Structure of the bacterial nanosized speargun – called type VI secretion system – during contraction.

University of Basel, Biozentrum

Two years ago, Prof. Marek Basler was able to elucidate the atomic structure of the speargun in the “post-firing” state. In the current study, which was carried out in cooperation with various research groups and technology platforms at the Biozentrum, his team has now solved the structure of the “ready to fire” speargun. Based on these findings, the researchers have been able to model how this T6SS speargun works.

Structure of nanosized speargun changes during firing

The speargun is composed of various components, including a sheath and a spear with a sharp tip. The sheath consists of over 200 connected cogwheel-like protein rings that are assembled around the inner rigid spear. When T6SS fires, the sheath rapidly contracts and pushes the toxic spear out of the cell, which can then penetrate into neighboring cells where it releases deadly toxins. “So far, there have only been assumptions as to how the structure of the T6SS sheath changes during contraction,” says Basler. “Using cryo-electron microscopy available at C-CINA, we have now obtained an image of the spear and the extended sheath in atomic resolution.”

By comparing the structures of the extended and contracted states, the researchers were able to model how the T6SS works in detail. “During the sheath contraction, ring after ring turns and gets closer to the previous ring, while the ring diameter expands and thus releases the spear,” explains Basler. “This combination of sheath shrinking and turning results in drilling a hole into the target cells. Within less than two milliseconds, the T6SS sheath contracts to half of its length and at the same time the toxic spear spirals out like a screw. Therefore, the bacteria have an extremely powerful drill.”

Only contracted T6SS sheaths are disassembled

Furthermore, the researchers also addressed another question. After firing T6SS, bacteria re-use the individual components of the sheath to assemble a new speargun. “For a long time, it was not clear why only the contracted, but not the extended sheath is disassembled,” says Basler. “Now, we could see that a certain protein domain is exposed on the surface of the sheath during contraction and can be recognized by a specific protein responsible for dismantling the sheath. In the extended sheath state, this domain is hidden and the T6SS sheath is therefore protected from disassembly.”

The bacterial speargun will continue to be the subject of future research. “One of our projects is dedicated to the question of how the T6SS is embedded in the bacterial cell envelope. As the speargun is fired with such a high force, it must be firmly anchored, otherwise firing would not work properly or could be also fatal for the weapon-carrying bacteria themselves.”

Original article

Jing Wang, Maximilian Brackmann, Daniel Castaño-Díez, Mikhail Kudryashev, Kenneth N. Goldie, Timm Maier, Henning Stahlberg and Marek Basler
Cryo-EM structure of the extended type VI secretion system sheath-tube complex
Nature Microbiology (2017), doi: 10.1038/s41564-017-0020-7

Video: Prof. Marek Basler, Bacterial nanosized speargun

https://www.youtube.com/watch?v=wrGOU76fg40

Further information

Prof. Dr. Marek Basler, University of Basel, Biozentrum, Tel. +41 61 207 21 10, email: marek.basler@unibas.ch
Dr. Katrin Bühler, University of Basel, Biozentrum, Communications, Tel. +41 61 207 09 74, email: katrin.buehler@unibas.ch

Dr. Katrin Bühler | Universität Basel
Further information:
http://www.unibas.ch

More articles from Life Sciences:

nachricht Fish recognize their prey by electric colors
13.11.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection
13.11.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>