Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Avoid the Fallout

23.01.2012
New Ligands for Nuclear Waste Treatment

Storage and containment of the "nuclear legacy", the highly radiotoxic residues from spent nuclear reactors is a pressing problem for the nuclear power industry that must be solved if nuclear power is to have a genuine contribution to providing carbon footprint minimised power.

The search for new ways to lessen the environmental impact of such events is therefore of utmost importance. An EU-funded team led by Laurence Harwood has now developed a new ligand that may selectively remove radiotoxic materials from aqueous radioactive waste. As the scientists report in the European Journal of Organic Chemistry, their ligand is based on the current benchmark ligand system used in the SANEX process.

One of the major goals in the treatment of nuclear waste is the selective removal of radiotoxic minor actinides (Am and Cm) from the lanthanides in a solvent extraction process, known as the Selective ActiNide EXtraction (SANEX) process. Once separated, these elements may, in future, be used as fuel in Generation IV reactors and transmuted into non-fissile material, while the remaining waste is suitable for safer geological disposal, reducing its environmental impact and ultimately increasing the sustainability of nuclear energy.

A large number of compounds has been tested for their ability to extract actinides in the presence of lanthanides from solutions produced during the reprocessing of nuclear waste. The most promising ligands are based on a bis(1,2,4-triazin-3-yl)-2,2-bipyridine (BTBP) scaffold. The scientists from the UK, Czech Republic, and Spain within the ACSEPT consortium proposed a new set of ligands based on BTBP that contain either two additional alkyl groups or seven-membered aliphatic rings to determine the effects of these modifications on the solubilities and extraction properties of the ligands. It was thought that aliphatic substituents would improve the solubility of the ligands in specific solvents and the absence of benzylic hydrogen atoms would increase the resistance of the ligands to degradation.

The team of researchers found that additional alkyl groups on the scaffold of the ligand did not increase its solubility, but the substituted BTBPs were nevertheless found to be highly efficient and selective in the extraction and separation of AmIII from EuIII in the tested solvents in the presence of a phase modifier. Although a great deal has been concluded from this work, the authors still acknowledge that the challenge to increase the solubilities of the BTBP ligands without adversely affecting their extraction kinetics remains to be addressed, but this work represents a significant contribution to understanding the complexities of this system. The stakes remain high, the rewards even greater.

Author: Laurence Harwood, University of Reading (UK), http://www.reading.ac.uk/chemistry/about/staff/l-m-harwood.aspx
Title: Synthesis and Evaluation of Lipophilic BTBP Ligands for An/Ln Separation in Nuclear Waste Treatment: The Effect of Alkyl Substitution on Extraction Properties and Implications for Ligand Design

European Journal of Organic Chemistry, Permalink to the article: http://dx.doi.org/10.1002/ejoc.201101576

Laurence Harwood | Wiley-VCH
Further information:
http://www.wiley-vch.de
http://www.reading.ac.uk/chemistry/about/staff/l-m-harwood.aspx

More articles from Life Sciences:

nachricht Overlooked molecular machine in cell nucleus may hold key to treating aggressive leukemia
23.04.2019 | Cincinnati Children's Hospital Medical Center

nachricht Bacteria use their enemy -- phage -- for 'self-recognition'
23.04.2019 | Chinese Academy of Sciences Headquarters

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Marine Skin dives deeper for better monitoring

23.04.2019 | Information Technology

Geomagnetic jerks finally reproduced and explained

23.04.2019 | Earth Sciences

Overlooked molecular machine in cell nucleus may hold key to treating aggressive leukemia

23.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>