Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atomic view of nature's amazing molecular machines at work

01.11.2018

Researchers from the MPSD's Department of Atomically Resolved Dynamics at the Center for Free-Electron Laser Science, the Centre for Ultrafast Imaging (all in Hamburg), the University of Toronto in Canada and the ETH in Zurich, Switzerland, have developed a new method to watch biomolecules at work.

This method not only simplifies the experiment but accelerates it so much that many snapshots can now be recorded in a single experimental session. These can then be assembled into a time-lapse sequence that shows the molecular foundations of biology.


The “hit and return” (HARE) method simplifies taking snap-shot movies of biomolecules at work.

Jörg Harms / MPSD

All life is dynamic and so are its molecular building blocks. The motions and structural changes of biomolecules are fundamental to their function. However, understanding these dynamic motions at a molecular level is a formidable challenge.

One method to understand them is time-resolved X-ray crystallography, where the reaction of a biological molecule is triggered and then snapshots are taken as it reacts. However, these experiments are extremely time-consuming.

The new “hit-and-return” method is tailored to the study of biologically relevant reaction time-scales, which are on the order of milliseconds to seconds or even minutes. These time-scales are of particular interest to biologists and pharmaceutical researchers as they often reveal the structural changes relevant to a particular biological function or the turnover of a drug.

Combining the highly intense micro-focused X-ray beams available on beamline P14 of the European Molecular Biology Laboratory (EMBL) and beamline P11 at DESY (Deutsches Elektronen Synchrotron) with the hit and return method allowed the team to interrogate an important enzyme for the breakdown of manmade pollutants in action, on the millisecond time-scale.

Key to their success was that the “hit-and return” method makes the whole experiment a lot faster than previous approaches. While a single structural snapshot could previously only be obtained after several hours of data collection, the new “hit-and-return” method provides about 1 time-point per hour, irrespective of the delay-time.

The method works so well that it is now possible to collect many snapshots consecutively, letting the researchers record a time-lapse sequence of the structural changes during a biomolecule’s complete reaction within a single 24-hour experiment. Excitingly, this new method has great potential for existing and up-coming high-brilliance synchrotron radiation sources. Its far less time-consuming nature will allow many more researchers to carry out time-resolved crystallography studies.

Together with EMBL and the University of Hamburg, with the support of the German Department for Education and Research (BMBF), the “hit-and-return” method is already being implemented as a standard sample environment for the new time-resolved macromolecular crystallography end station on the EMBL beamline P14 at the PETRA III synchrotron at DESY.

The team anticipates that many more important insights about biochemical processes will come about by applying such cutting-edge technologies. A deeper understanding of these processes will, in turn, help to answer some of the most pressing questions about our health and the environment.

Wissenschaftliche Ansprechpartner:

Dr Eike-Christian Schulz: eike.schulz@mpsd.mpg.de, tel. +49 40 8998 6264
Dr Pedram Mehrabi: pedram.mehrabi@mpsd.mpg.de
Media contact: jenny.witt@mpsd.mpg.de, tel +49 40 8998 6593

Originalpublikation:

https://www.nature.com/articles/s41592-018-0180-2

Weitere Informationen:

http://www.mpsd.mpg.de/508372/2018-10-hare-schulz
https://news.embl.de/science/time-resolved-x-ray-crystallography/

Jenny Witt | Max-Planck-Institut für Struktur und Dynamik der Materie

More articles from Life Sciences:

nachricht Molecular motors run in unison in a metal-organic framework
20.03.2019 | University of Groningen

nachricht Active substance from plant slows down aggressive eye cancer
20.03.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Molecular motors run in unison in a metal-organic framework

20.03.2019 | Life Sciences

Active substance from plant slows down aggressive eye cancer

20.03.2019 | Life Sciences

Novel sensor system improves reliability of high-temperature humidity measurements

20.03.2019 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>