Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atomic structure of essential circadian clock protein complex determined

02.06.2014

Discovery of possible basis for treating circadian clock disorders and associated metabolic problems

Structural biologists have made important progress towards better understanding the functioning of the circadian clock. The circadian or inner clock coordinates the sleep-wake rhythm and many other body processes that regulate, for example, metabolism, blood pressure, and the immune system.


Three-dimensional structure of the mouse cryptochrome-period clock protein complex. The complex is stabilized by a zinc atom coordinated by both proteins.

source: Eva Wolf, JGU

A research team led by Professor Eva Wolf, recently appointed Professor of Structural Biology at the Institute of General Botany of Johannes Gutenberg University Mainz (JGU) and Adjunct Director at the Institute of Molecular Biology (IMB), has for the first time identified the molecular structure of a protein complex that plays an important role in regulating the circadian rhythm. At the same time, they also made a surprising discovery: The protein complex contains a zinc ion, which apparently stabilizes it. These results could form the basis for new strategies for treating illnesses that are the result of circadian clock dysfunction.

"Our circadian clock controls many important physiological functions," explained Professor Eva Wolf. If the natural rhythm is disrupted, as for example in the case of people on shift work, the likelihood of developing metabolic disorders, diabetes, or cancer is significantly increased. The fundamental research conducted in the Wolf group is focused on obtaining insight into the molecular mechanisms of the circadian clock.. Among the currently investigated topics are the cryptochromes, a class of proteins associated with the circadian clock in mammals. In addition to regulating circadian rhythm, these also control glucose homeostasis and blood sugar levels. Together with another clock protein called period they form a complex, the structure of which has just been determined by Wolf's team.

... more about:
»Atomic »Biology »Molecular »clock »disulfide »proteins »structure »zinc

By x-ray analysis of the cryptochrome-period complex structure, the researchers were able to observe atomic details of the interaction between the cryptochrome and period proteins and also discovered that the zinc ion mediates this interaction. "The metal ion stabilizes the complex and also appears to influence an adjacent disulfide bond," clarified Wolf. Cell biological studies conducted in the collaborating group of Prof. Dr. Achim Kramer at the Charite Berlin showed that this also is the case in human cells.”

The researchers had not expected to detect a disulfide bond in the presence of the redox state that prevails in the cytoplasm and the cell nucleus. Its existence is probably regulated by the zinc ion and the disulfide bond itself is perhaps a sensor that indicates the metabolic status of the cell.

"We assume that the formation of this cryptochrome-period protein complex provides a mechanism by which the circadian clock interacts with the metabolism, while the zinc ion and the disulfide bond play an important role in regulating the stability of the complex," summarized Wolf. The now Mainz-based biologist hopes that further findings about the basic functioning of the cryptochrome-period complex and her aim of determining the interaction patterns of further clock proteins may help in the development of future medical treatments.

About the Institute for Molecular Biology gGmbH
The Institute of Molecular Biology gGmbH (IMB) is a center of excellence in the life sciences that was established in 2011. Research at IMB concentrates on three cutting-edge areas: epigenetics, developmental biology, and DNA repair. The institute is a prime example of a successful collaboration between public authorities and a private foundation. The Boehringer Ingelheim Foundation has dedicated EUR 100 million for a period of 10 years to cover the operating costs for research at IMB, while the state of Rhineland-Palatinate provided approximately EUR 50 million for the construction of a state-of-the-art building.
For more information about IMB, please visit www.imb.de

About the Boehringer Ingelheim Foundation
The Boehringer Ingelheim Foundation is an independent, non-profit organization committed to the promotion of the medical, biological, chemical, and pharmaceutical sciences. It was established in 1977 by Hubertus Liebrecht (1931-1991), a member of the shareholder family of the company Boehringer Ingelheim. Through its PLUS 3 Perspectives Program and Exploration Grants, the foundation supports independent group leaders; it also endows the internationally renowned Heinrich Wieland Prize as well as awards for up-and-coming scientists. The foundation has granted EUR 100 million over a period of ten years to finance the scientific activities of the Institute of Molecular Biology (IMB).
For more information about the foundation and its programs, please visit www.boehringer-ingelheim-stiftung.de

Image:
http://www.uni-mainz.de/bilder_presse/10_botany_circadian_clock.jpg
Three-dimensional structure of the mouse cryptochrome-period clock protein complex. The complex is stabilized by a zinc atom coordinated by both proteins.
source: Eva Wolf, JGU

Publication:
Ira Schmalen et al.
Interaction of Circadian Clock Proteins CRY1 and PER2 Is Modulated by Zinc Binding and Disulfide Bond Formation
Cell 157:5, pp 1203-1215, 22 May 2014
DOI: 10.1016/j.cell.2014.03.057

Further information:
Professor Dr. Eva Wolf
Institute of General Botany / Institute of Molecular Biology (IMB)
Johannes Gutenberg University Mainz (JGU)
D 55099 Mainz, GERMANY
phone +49 6131 39-21701
fax +49 6131 39-27850
e-mail: evawolf1@uni-mainz.de
http://iabserv.biologie.uni-mainz.de/

Weitere Informationen:

http://www.cell.com/cell/abstract/S0092-8674(14)00535-2 ;
http://www.imb.de/wolf

Petra Giegerich | idw - Informationsdienst Wissenschaft

Further reports about: Atomic Biology Molecular clock disulfide proteins structure zinc

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>