Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic ground squirrels muscle up to hunker down

16.09.2011
Animals burn protein during long, cold hibernation

When Arctic ground squirrels are getting ready to hibernate they don't just get fat – they pack on muscle at a rate that would make a bodybuilder jealous. And they do it without suffering the harmful effects that high levels of testosterone and other anabolic steroids usually cause. University of Toronto Scarborough (UTSC) researchers have started to untangle how the squirrels manage it, and their results could someday have implications for human health.

Arctic ground squirrels, it turns out, ramp up their anabolic steroid levels and keep them high not just during the spring mating season, but during the summer and fall. To avoid the damaging effects of these high levels, they seem to suppress androgen receptors in all tissues except muscle, according to Rudy Boonstra, professor of biological sciences at UTSC.

Boonstra's research will appear in an upcoming issue of Functional Ecology. It is co-authored by Brendan Delehanty, also of UTSC, and Adrian J. Bradley of the University of Queensland.

Like many other hibernators, Arctic ground squirrels go underground in winter and burn the fat they stored up during the summer and fall. But Arctic ground squirrels have a problem faced by almost no other hibernator. Other animals dig below the frost line and hibernate in a relatively warm 0° C. Because Arctic ground squirrels can't get below the permafrost, they have to spend their eight-month hibernation at temperatures as low as -23° C.

Thus to stay alive their metabolisms have to run at a higher rate than other hibernators. Stored fat provides much of the energy they need, but it can't give them the levels of glucose required by vital tissues such as the brain and heart. Only burning protein stored in muscles will provide the needed glucose.

To see what was going on, Boonstra and colleagues examined the blood of Arctic ground squirrels in Canada's northern Yukon territory over an entire active season, and compared it with blood taken from Columbian ground squirrels from southern Alberta, a species which hibernates at about 0°C.

In most ground squirrels, testosterone levels in males peak during mating season then fall drastically afterwards. In male Arctic ground squirrels, anabolic steroid levels (including testosterone) start out higher than in other species and stay elevated – between 10 and 200 times higher than in any other ground squirrels. Females also had exceptionally high levels of androgens, between 40 and 100 times higher than in other ground squirrels.

These high levels of androgens help both males and females to increase lean body mass (i.e. muscle) by about 25 percent in the months leading up to winter hibernation – mass which is then consumed as they hibernate.

In another portion of the study Boonstra and colleagues showed that in males these anabolic steroids were not being produced at the normal site of production, the testes. Instead, the squirrels produced them in their adrenal glands.

High doses of anabolic steroids also have negative effects, such as suppressing the immune system, and in older human males, causing prostate cancer. Men who take anabolic steroids to increase muscle mass and strength can suffer side effects like baldness, scarring acne, shrinkage of the testicles, behavioral and psychiatric problems, and increased risk of cardiovascular disease.

Arctic ground squirrels are proposed to down-regulate androgen receptors in tissues other than muscle. In other words, the androgens coursing through their bodies are invisible to all tissues except muscle, which protects them from the ill effects of too much androgen. How they do this still isn't known.

Because of the role of androgen levels on prostate cancer, understanding how Arctic ground squirrels turn off androgen receptors could someday have implications for human health, Boonstra says.

Rudy Boonstra | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>