Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic bacteria -- some like it hot

18.09.2009
Surprisingly high numbers of heat-loving bacteria found in the cold Arctic Ocean

In subzero sediments off the island of Spitsbergen, scientists from the German Max Planck Institute for Marine Microbiology have detected high numbers of thermophilic (heat-loving) bacteria that are adapted to live in much warmer habitats.

These thermophiles exist in the Arctic as spores -- dormant forms that withstand adverse conditions for long periods, waiting for better times.

Experimental incubations at 40 to 60 degrees Celsius revive the Arctic spores, which appear to have been transported from distant hot spots. The discovery could shed new light on one of microbiology's great hypotheses: "Everything is everywhere, but, the environment selects."

The thermophilic spores were discovered during the Max Planck Institute's ongoing research into temperature adaptations of psychrophilic (cold-loving) bacteria in Spitsbergen's permanently cold fjords. Biological activity was measured by incubating sediment samples with labeled substrate at increasing temperatures. The scientists were impressed to see the activity increase dramatically above 40 degrees Celsius. Some dormant spores had apparently come back to life.

The results presented a unique opportunity to study misplaced microbes in a quantitative way. Using metabolic rate measurements, the researchers estimated that a single gram of the Arctic sediment contains up to 100 000 thermophilic spores. This abundance combined with the unusual location is what Max Planck Director Prof. Bo Barker Jørgensen finds exciting: "What is novel here is not the discovery of thermophiles in the Arctic, but demonstrating their high numbers and constant rate of supply." By measuring the sediment accumulation rate, the team calculated an annual deposition of 100 million thermophiles per square meter of the seabed.

So, where are the Arctic thermophiles coming from? Lead author Casey Hubert narrows down the possibilities: "The large and steady flux of anaerobic bacteria indicates that they are coming from a huge anoxic (free of oxygen) source." Transport pathways connecting these hot spots to the cold ocean must also exist. The researchers speculate fluid circulation through spreading ridges where the ocean crust forms and "black smokers" and other hydrothermal vents occur, since bacteria from these systems are genetically similar to the Arctic thermophiles. Another source could be deep hot sub-marine oil reservoirs where gas and oil leak upwards, eventually penetrating the sea floor. "The genetic similarities to bacteria from hot North Sea oil reservoirs are striking," adds Dr. Hubert. The scientists hope further experiments and genetic forensics will reveal the warm source. The spores might provide a unique opportunity to trace seepages from the hot subsurface, possibly pointing towards undiscovered offshore petroleum deposits.

In the meantime, the findings provide fresh insight for understanding marine biodiversity and the "hidden rare biosphere." Obscured by the major bacterial groups in a given environment are countless minorities that do not contribute to element cycling in any detectable way. Microbiologists continue to puzzle over how bacteria spread out to establish the vast microbial diversity that is measured in nature. The thermophilic spores appear to hold important clues about this riddle of biogeography, even as they sit dormant in the cold Arctic sediment, waiting in vain for better times.

This work was supported by the Natural Sciences and Engineering Research Council of Canada, the Max Planck Society, the Austrian Science Fund, and the National Science Foundation (US).

Manfred Schlösser
"A Constant Flux of Diverse Thermophilic Bacteria into the Cold Arctic Seabed".
Casey Hubert, Alexander Loy, Maren Nickel, Carol Arnosti, Christian Baranyi, Volker Brüchert, Timothy Ferdelman, Kai Finster, Flemming Mønsted Christensen, Júlia Rosa de Rezende, Verona Vandieken, and Bo Barker Jørgensen. Science, 18 September 2009 doi

For further information please contact:

Casey Hubert, PhD
University of Newcastle, UK
casey.hubertnewcastle.ac.uk
+44 191 246 4864
Prof. Bo Barker Jørgensen,
Director of the Max Planck Institute for Marine Microbiology
and Head of the Center for Geomicrobiology
Dept. of Biological Sciences, Aarhus University
bo.barkerbiology.au.dk
+45 8942 3314
Timothy Ferdelman, PhD
Head of the Biogeochemistry Group at the Max Planck- nstitute for Marine Microbiology
tferdelmmpi-bremen.de
+49 421 2028 632
or the MPI press officers
Manfred Schloesser, +49 421 2028704, mschloesmpi-bremen.de
Susanne Borgwardt sborgwarmpi-bremen.de
Institutes
Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany.

Department of Microbial Ecology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.

Department of Marine Sciences, University of North Carolina, Chapel Hill, North Carolina 27599-3300, USA.

Department of Biological Sciences - Microbiology section, Aarhus University, Ny Munkegade, Building 1535, DK-8000 Aarhus C, Denmark.

Center for Geomicrobiology, Department of Biological Sciences, Aarhus University, Ny Munkegade, Building 1535, DK-8000 Aarhus C, Denmark.

Dr. Manfred Schloesser | Max-Planck-Gesellschaft
Further information:
http://www.mpi-bremen.de

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>