Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anthrax: a hidden threat to wildlife in the tropics

03.08.2017

Joint press release by the Robert Koch Institute, the Max Planck Institute for Evolutionary Anthropolgy, the University of Glasgow and Laboratoire Central Vétérinaire de Bingerville, Ivory Coast

Anthrax, a disease so far not associated with tropical rain forests, is common in the Ivory Coast’s Taï National Park and is posing a serious threat to wildlife there. The bacterium could soon even cause the extinction of local chimpanzee populations.


Chimpanzees in Taï National Park, Côte d'Ivoire.

Source: Liran Samuni/ Taï Chimpanzee Project

This is revealed in a study by scientists from the Robert Koch Institute (RKI), the Max-Planck Institute for Evolutionary Anthropology, the University of Glasgow, and the Ivorian National Animal Health Institute to appear on 3 August 2017 in the journal Nature („Persistent anthrax as a major driver of wildlife mortality in a tropical rainforest“).

“The results demonstrate the importance of long-term studies of infectious diseases and their effects on wildlife”, says RKI’s Fabian Leendertz, the veterinary scientist leading the study. “They help us to better protect endangered species. But at the same time, infections in great apes are often indicators of diseases that can also affect humans”. Lothar H. Wieler, president of the RKI and co-author, adds: “The work really highlights the One Health approach that sees human and animal health as intimately connected and stresses the need for considering them jointly.”

Anthrax is caused by spore-forming bacteria, typically Bacillus anthracis. Especially in the arid regions of Africa, outbreaks are common and can also affect people and their livestock. In 2004, Leendertz’ team at RKI discovered a previously unknown type of the anthrax bacterium in dead chimpanzees in the rainforests of Taï National Park: Bacillus cereus biovar anthracis. Studies conducted since have shown that the same type has also caused mortality in isolated cases in chimpanzees, gorillas, and elephants in Cameroon and the Central African Republic.

In their current work, the researchers focussed on the distribution of the pathogen within Taï National Park and its effect on wildlife populations. They analysed bone and tissue samples which had been collected over the last 28 years from mammal carcasses found in the park.

They also looked at the stomach content of carrion flies: these flies constantly encounter carcasses, pick up the anthrax pathogen, and can thus provide clues about the areas and species it circulates in. Bones and flies from 16 other regions in sub-Saharan Africa were also tested. Sequencing and analysing the pathogen’s genome, which also involved scientists at the University of Glasgow, enabled establishment of how animal cases were linked.

“To our surprise, almost 40 percent of all animal deaths in Taï National Park we investigated were attributable to anthrax,” reports Emmanuel Couacy-Hymann from the Ivorian National Animal Health Institute. The researchers found the pathogen in several monkey species, duikers, mongoose, and a porcupine. Most seriously affected were the chimpanzees: 31 of the 55 individuals whose carcasses were examined had died from the disease.

“According to our projections, anthrax could over time contribute to drive chimpanzees in Taï National Park to extinction,” says Roman Wittig, who leads the Taï Chimpanzee project at the Max-Planck Institute for Evolutionary Anthropology. The scientists are now trying to find out why the pathogen is particularly active in Taï National Park; they also still don’t know where and how animals become infected. In addition, the researchers are searching for ways to protect the chimpanzees, including the possibility of vaccination.

Human infections with the atypical type of the anthrax bacterium have so far not been reported. But the probability that it also poses a threat to humans, just like Bacillus anthracis, is high, since both types are highly related. Collaborative studies between RKI and research institutes and agencies in Ivory Coast to investigate this are currently under way. Anthrax in humans can cause death but if recognised early can usually be treated successfully with antibiotics.

Pictures of the scientists’ work and chimpanzees in Taï National Park can be downloaded at http://www.rki.de/DE/Content/Service/Presse/Pressefotos/Milzbrand-Tab2.html.

Further information:
• Robert Koch Institute, project group “Epidemiology of Highly Pathogenic Microorganisms: www.rki.de/p3-en
• Max Planck Institute for Evolutionary Anthropology, Department of Primatology: http://www.eva.mpg.de/primat
• University of Glasgow, Institute of Biodiversity Animal Health and Comparative Medicine: http://www.gla.ac.uk/researchinstitutes/bahcm/


Publisher

Robert Koch Institute
Nordufer 20
D-13353 Berlin

www.rki.de 
Twitter: @rki_de

Press office
Susanne Glasmacher
(Press Officer)
Günther Dettweiler
Marieke Degen
(Deputy Press Officers)
Heidi Golisch
Claudia Paape
Judith Petschelt

Contact
Tel .: 030-18754-2239, -2562 and -2286
E-mail: presse@rki.de

The Robert Koch Institute is a federal institute within the portfolio of the German Federal Ministry of Health

Marieke Degen | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>