Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Amniotic fluid stem cells repair gut damage

25.03.2013
Stem cells taken from amniotic fluid were used to restore gut structure and function following intestinal damage in rodents, in new research published in the journal Gut. The findings pave the way for a new form of cell therapy to reverse serious damage from inflammation in the intestines of babies.

The study, funded by Great Ormond Street Hospital Children's Charity, investigated a new way to treat necrotizing enterocolitis (NEC), where severe inflammation destroys tissues in the gut. NEC is the most common gastrointestinal surgical emergency in newborn babies, with mortality rates of around 15 to 30 per cent in the UK.

While breast milk and probiotics can help to reduce the incidence of the disease, no medical treatments are currently available other than surgery once NEC sets in. Surgical removal of the dead tissue shortens the bowel and can lead to intestinal failure, with some babies eventually needing ongoing parenteral nutrition (feeding via an intravenous line) or an intestinal transplant.

In the study, led by the UCL Institute of Child Health, amniotic fluid stem (AFS) cells were harvested from rodent amniotic fluid and given to rats with NEC. Other rats with the same condition were given bone marrow stem cells taken from their femurs, or fed as normal with no treatment, to compare the clinical outcomes of different treatments.

NEC-affected rats injected with AFS cells showed significantly higher survival rates a week after being treated, compared to the other two groups. Inspection of their intestines, including with micro magnetic resonance imaging (MRI), showed the inflammation to be significantly reduced, with fewer dead cells, greater self-renewal of the gut tissue and better overall intestinal function.

While bone marrow stem cells have been known to help reverse colonic damage in irritable bowel disease by regenerating tissue, the beneficial effects from stem cell therapy in NEC appear to work via a different mechanism. Following their injection into the gut, the AFS cells moved into the intestinal villi - the small, finger-like projections that protrude from the lining of the intestinal wall and pass nutrients from the intestine into the blood. However, rather than directly repairing the damaged tissue, the AFS cells appear to have released specific growth factors that acted on progenitor cells in the gut which in turn, reduced the inflammation and triggered the formation of new villi and other tissues.

Dr Paolo De Coppi, UCL Institute of Child Health, who led the study, says: "Stem cells are well known to have anti-inflammatory effects, but this is the first time we have shown that amniotic fluid stem cells can repair damage in the intestines. In the future, we hope that stem cells found in amniotic fluid will be used more widely in therapies and in research, particularly for the treatment of congenital malformations. Although amniotic fluid stem cells have a more limited capacity to develop into different cell types than those from the embryo, they nevertheless show promise for many parts of the body including the liver, muscle and nervous system."

Dr Simon Eaton, UCL Institute of Child Health and co-author of the study, adds: "Once we have a better understanding of the mechanisms by which AFS cells trigger repair and restore function in the gut, we can start to explore new cellular or pharmacological therapies for infants with necrotizing enterocolitis."

Notes to editors

For further information, please contact Jenny Gimpel at the GOSH-ICH press office on + 44 (0)20 7239 3043 or jenny.gimpel@gosh.org.

'Amniotic fluid stem cells improve survival and enhance repair of damaged intestine in NEC via a COX-2 dependent mechanism' by Zani et al, is published on Monday 25 March 2013 in the journal Gut. To obtain a copy of the paper, please contact Jenny Gimpel at the GOSH-ICH press office.

The study was funded by Great Ormond Street Hospital Children's Charity, with support from the Fondazione Citta della Speranza.

Jenny Gimpel | EurekAlert!
Further information:
http://www.gosh.org

More articles from Life Sciences:

nachricht Monitoring biodiversity with sound: how machines can enrich our knowledge
18.06.2019 | Georg-August-Universität Göttingen

nachricht Uncovering hidden protein structures
18.06.2019 | Universität Konstanz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Uncovering hidden protein structures

18.06.2019 | Life Sciences

Monitoring biodiversity with sound: how machines can enrich our knowledge

18.06.2019 | Life Sciences

Schizophrenia: Adolescence is the game-changer

18.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>