Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Algae with light switch

02.10.2017

The adhesion of Chlamydomonas, a unicellular alga, to surfaces is light-dependent

Sunlight allows green algae to do more than just carry out photosynthesis. Some unicellular algae actually use light to switch the adhesion of their flagella to surfaces on and off - a phenomenon first discovered by physicists at the Göttingen Max Planck Institute for Dynamics and Self-Organization. These findings are particularly relevant to the development of bioreactors in which algae serve as a renewable raw material for producing biofuels.


Green algae can switch their ability to adhere to surfaces on and off by means of light. In light, their two fine hairs, called flagella, stick to a surface, whereas in the dark, the algae swim through the water using a sort of breast-stroke movement.

Credit: Oliver Bäumchen, MPIDS, Göttingen / Thomas Braun, Heidelberg

In everyday life, green algae tend to be bad news. In damp weather, microscopic unicellular algae form a slimy layer on garden furniture and house walls; during warm summers, they form a scum on the surface of garden ponds and water-treatment tanks. But green algae can also be beneficial.

For years now algae have been cultivated in bioreactors, in large facilities comprised of glass tubes, to produce biofuels. However, green algae have a property that makes this process difficult: using small hairs, known as flagella, they adhere to surfaces. In bioreactors, this results in a green biofilm forming on the walls of the glass tubes. As a result, less light penetrates into the reactor. The biofilm reduces the ability of other algae in the reactor to carry out photosynthesis, thus making the bioreactor less efficient.

Chlamydomonas do not stick in red light

A research team led by Oliver Bäumchen, a physicist at the Max Planck Institute for Dynamics and Self-Organization in Göttingen, has now made a discovery that could boost the efficiency of bioreactors. "In experiments with green algae, we found that the algae are sticky and able to adhere to surfaces only under certain light conditions," Oliver Bäumchen says.

The scientist has been focused on the adhesive properties of microorganisms for many years. He is primarily interested in flagella and the mechanisms by which these tiny hair-like structures can exert surprisingly strong adhesive forces. He and his staff devised a precise sensor to measure the forces involved: an ultra-thin glass micropipette that can aspire a single green algal cell. Using the micropipette, they measure the force needed to detach a living cell from a surface.

Chlamydomonas uses various proteins to sense light

Bäumchen's doctoral student, Christian Kreis, found that the adhesion of algae to surfaces can be controlled by light. Experimenting with the green alga Chlamydomonas, he found that it consistently exhibited a strong adhesive force only under white light. Under red light, the cells did not adhere to surfaces at all. It has long been known that many microorganisms orientate themselves to light and, for example, swim towards a light source. However, it was not previously known that the green alga's adhesion mechanism can be switched on and off with light.

Kreis investigated the light response more closely and found that Chlamydomonas exclusively sticks to surfaces when exposed to blue light. The alga uses a number of special light-sensitive proteins to sense the light. "We believe that light-switchable adhesiveness may be a product of evolution," Christian Kreis says. Unlike marine phytoplankton, these related microorganisms usually live in wet soils where they often encounter surfaces. "If those surfaces are exposed to sunlight, this clever mechanism enables the algae to latch on to them and start carrying out photosynthesis," the researcher explains.

Algae with modified blue-light photoreceptors might not form biofilms

This finding does not in itself provide a way to prevent algal deposits from forming on the glass walls of bioreactors. Exposing bioreactors to the red light only to switch off adhesion does not work, because green algae also require blue light for photosynthesis. Oliver Bäumchen and Christian Kreis are therefore taking a different approach. "We've now teamed up with microbiologists who have a great deal of experience with green algae," Bäumchen says. "We plan to study cells in which the various blue-light photoreceptors are blocked to find out which of those photoreceptors is in fact responsible for triggering the adhesive properties." If algae with modified blue-light photoreceptors could be grown in large volumes, we might be able to use them in bioreactors without the annoyance of biofilms forming on the surfaces.

Oliver Bäumchen's research team has focussed on the switchable adhesion of green algae for several reasons: "It is generally interesting to understand the phenomenon of surface adhesion. After all, the adhesion forces are enormous in relation to the cells' size," Bäumchen says. He is also studying flagella because their construction principle is almost identical to that of cilia in the human body, for example in the lungs.

Christian Kreis is also concerned with ways to prevent the formation of algal biofilms. He is currently investigating whether adhesion can be switched on and off by triggers other than light, for example by surfaces carrying weak electrical charges. "Biofilms are troublesome in many applications," the researcher says. "If we could design surfaces in such a way that they prevent microorganisms to stick to them, that would be a boon for many applications in medicine, biotechnology and chemical engineering."

###

Original publication

Adhesion of Chlamydomonas microalgae to surfaces is switchable by light
Christian Titus Kreis, Marine Le Blay, Christine Linne, Marcin Michal Makowski and Oliver Bäumchen
Nature Physics, 25 September 2017; doi: 10.1038/nphys4258

Dr. Oliver Bäumchen | EurekAlert!

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>