Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ever alert for inflammation

03.05.2010
Regulatory T cells can travel to and from the skin while controlling immune responses in that organ

By showing that anti-inflammatory regulatory T cells (Tregs) move to and from the skin whilst regulating an immune response, an international research team involving RIKEN researchers has provided insight into how immune cells behave during inflammation.

The team, including Michio Tomura, Shohei Hori and Osami Kanagawa from the RIKEN Research Center for Allergy and Immunology in Yokohama and Kenji Kabashima from the Kyoto University Graduate School of Medicine, used a specially engineered line of mice to track immune cells in a living animal model. The mice—developed previously by Tomura, Kanagawa and colleagues—express a protein called Kaede that usually causes their cells to glow green, but glow red once exposed to violet light. This color switching allowed the researchers to tag cells from one part of the body and track them as they moved elsewhere. “This kind of approach is only possible in our original Kaede mouse system and by collaboration among research centers within RIKEN,” says Tomura.

Tracking the tagged cells revealed that T cells traveled from the skin to a nearby lymph node in the absence of any immune stimulus, suggesting to the researchers that immune cells migrate through non-inflamed tissues as part of their surveillance function in the body.

When the researchers painted an antigen on the skin of these mice to induce an immune response, they observed an increase in the proportion of T cells in the nearby lymph node that had come from the skin. In mice with depleted immunosuppressive Tregs, they recorded an increase in skin swelling after antigen exposure. The team therefore believes that Tregs are required to reduce inflammation within the skin.

In tissue culture experiments, Tomura, Kabashima and colleagues found that the Tregs sourced from inflamed skin suppressed the proliferation of immune cells from the lymph node, better than Tregs that had not come from skin. The researchers suggest that was probably because skin Tregs expressed higher levels of anti-inflammatory molecules.

When they injected Tregs from inflamed skin of one mouse into inflamed skin of other mice, those Tregs reduced swelling better than cells from non-inflamed skin. The researchers also observed Tregs moving to newly inflamed areas of skin from other areas.

Since Tregs can travel to and from the skin while controlling immune responses in that organ, the researchers suggest that enhancing Treg migration or function could therefore be a promising therapeutic approach to dampen inflammation in various organs.

The corresponding author for this highlight is based at the Laboratory for Autoimmune Regulation, RIKEN Research Center for Allergy and Immunology

Journal information

1. Tomura, M., Honda, T., Tanizaki, H., Otsuka, A., Egawa, G., Tokura, Y. Waldmann, H., Hori, S., Cyster, J.G., Watanabe, T., Miyachi, Y., Kanagawa, O. & Kabashima, K. Activated regulatory T cells are the major T cell type emigrating from the skin during a cutaneous immune response in mice. The Journal of Clinical Investigation 120, 883–893 (2010)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6251
http://www.researchsea.com

More articles from Life Sciences:

nachricht Researchers target protein that protects bacteria's DNA 'recipes'
21.08.2018 | University of Rochester

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>