Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A New Tool to Reveal Structure of Proteins

21.03.2012
A new method to reveal the structure of proteins could help researchers understand biological molecules - both those involved in causing disease and those performing critical functions in healthy cells.

For roughly a decade, a technique called solid state nuclear magnetic resonance (NMR) spectroscopy has allowed researchers to detect the arrangements of atoms in proteins that defy study by traditional laboratory tools such as X-ray crystallography. But translating solid state NMR data into an actual 3D protein structures has always been difficult.

In the current online edition of Nature Chemistry, Christopher Jaroniec, associate professor of chemistry at Ohio State University, and his colleagues describe a new solid state NMR method that uses paramagnetic tags to help visualize the shape of protein molecules.

"Structural information about biological molecules is critical to understanding their function," Jaroniec said. "Our new method promises to be a valuable addition to the NMR toolbox for rapidly determining the structures of protein systems which defy analysis with other techniques."

Such protein systems include amyloids, which are fibrous clusters of proteins found in diseased cells, and associated with the development of certain neurological diseases in humans.

"Although for the purposes of the paper we tested the method on a small model protein, the applications are actually quite general," Jaroniec added. "We expect that the method will work on many larger and more challenging proteins."

Protein molecules are made up of long chains of amino acids folded and wrapped around themselves, like tangled spaghetti. Every type of protein folds into its own unique pattern, and the pattern determines its function in the body. Understanding why a protein folds the way it does could give scientists clues on how to destroy a protein, or alter its function.

To test their method, the researchers chose a protein called GB1, a common protein found in streptococcus bacteria. GB1 has been much studied by scientists, so the structure is already known. They engineered a form of the protein in which certain amino acids along the chain were replaced with a different amino acid - cysteine - and created the right chemical conditions for yet another tag - one containing an atom of copper - to stick to the cysteine. The amino acid-copper tags are known as "paramagnetic" molecules, and they significantly influence the signals emitted by the different protein atoms in the magnetic field of an NMR instrument.

The researchers were able to determine the locations of the protein atoms relative to the paramagnetic tags, and use this information to calculate the folded shape of the GB1 protein.

Jaroniec's partners on this project included Ishita Sengupta, Jonathan Helmus and Philippe Nadaud, all doctoral students at Ohio State, and Charles Schwieters of the National Institutes of Health.

This research was supported by the National Science Foundation and the National Institutes of Health.

Contact: Christopher Jaroniec, (614) 247-4284; Jaroniec.1@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | Newswise Science News
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht New gene potentially involved in metastasis identified
26.03.2019 | Institute of Science and Technology Austria

nachricht Decoding the genomes of duckweeds: low mutation rates contribute to low genetic diversity
26.03.2019 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New gene potentially involved in metastasis identified

Gene named after Roman goddess Minerva as immune cells get stuck in the fruit fly’s head

Cancers that display a specific combination of sugars, called T-antigen, are more likely to spread through the body and kill a patient. However, what regulates...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Searching for disappeared anti-matter: A successful start to measurements with Belle II

26.03.2019 | Physics and Astronomy

Extremely accurate measurements of atom states for quantum computing

26.03.2019 | Physics and Astronomy

Listening to the quantum vacuum

26.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>