Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A thin-skinned catalyst for chemical reactions

13.12.2012
Yolk-shell nanocrystal structure offers greater selectivity for heterogeneous catalysis

A chemical nanostructure developed by Boston College researchers behaves much like the pores of the skin, serving as a precise control for a typically stubborn method of catalysis that is the workhorse of industrial chemistry.


Boston College researches started with a metallic crystal. It was then coated with a "sacrificial layer" of copper oxide. The application of ZIF-8 formed a porous skin that then etched away the copper. Within the resulting cavity, researchers were able to control the chemical reaction thanks to the skin-like shell of ZIF-8.

Credit: Journal of the American Chemical Society

Scientists have been trying to develop so-called yolk-shell catalysts as a means of imparting greater selectivity on heterogeneous catalysis, a process used in most industrial chemistry, including the manufacture of fine chemicals, petrochemicals and agrochemicals.

Boston College Assistant Professor of Chemistry Chia-Kuang Tsung and his team developed a nanostructure that can regulate chemical reactions thanks to a thin, porous skin capable of precisely filtering molecules based on their size or chemical make-up, the group reported recently in the Journal of the American Chemical Society.

"The idea is to make a smarter catalyst," said Tsung. "To do that, we placed a layer of 'skin' on the surface that can discriminate between which chemical reacts or does not react with the catalyst."

The team started with a nanoscale metallic crystal, then applied a "sacrificial layer" of copper oxide over it, Tsung said. Next, a shell of highly refined material known as a metal-organic framework, or MOF, was applied to the structure. Immediately, the polycrystalline MOF adhered to the cooper oxide, forming and outer layer of porous "skin". At the same time, the MOF began to etch away the copper oxide layer from the surface of the crystal, creating a tiny chamber between the skin and the catalyst where the chemical reaction can take place.

Testing the structure with gases of varying molecular structure, Tsung said the skin proved it could allow ethylene, with the small molecule size, to pass through and reach the catalyst. The gas cyclooctene, with larger molecule size, was effectively blocked from reaching the catalyst. Tests showed the central difference between new method and earlier incarnations of yolk-shell catalysts was the creation of the empty chamber between the skin and catalyst, the researchers reported.

Tsung said the unprecedented level of control is a significant step in the use of unique nanoscale chemical structures in the effort to impart greater selectivity and control on heterogeneous catalysis, a proven process used to create chemicals in nearly all areas outside of pharmaceutical research, which employs homogeneous catalysis.

Scientists have been looking for ways to exert greater selectivity in heterogeneous catalysis in an effort to expand its application and extend "green chemistry" benefits of reduced byproducts and waste, Tsung said.

The key to the nanocrystal is the extremely precise structure of the metal-organic framework, Tsung said, which gives the skin an intricate network of pore-like passages through which select gases or liquids can pass before contacting the catalyst and triggering the desired reaction.

"We can make these pores very precisely, just like your skin or like the membrane surrounding a cell," Tsung said. "We can change their composition and chemical properties in order to accept or reject certain types of reactions. That is a level of control chemists in a variety of fields are eager to see nurtured and refined."

Ed Hayward | EurekAlert!
Further information:
http://www.bc.edu

More articles from Life Sciences:

nachricht Gut microbiome regulates the intestinal immune system, researchers find
19.12.2018 | Brown University

nachricht Greener days ahead for carbon fuels
19.12.2018 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New megalibrary approach proves useful for the rapid discovery of new materials

Northwestern discovery tool is thousands of times faster than conventional screening methods

Different eras of civilization are defined by the discovery of new materials, as new materials drive new capabilities. And yet, identifying the best material...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New megalibrary approach proves useful for the rapid discovery of new materials

19.12.2018 | Materials Sciences

Artificial intelligence meets materials science

19.12.2018 | Materials Sciences

Gut microbiome regulates the intestinal immune system, researchers find

19.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>