Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How a stuck accelerator causes cancer cell expansion

26.09.2008
Oncogene indirectly sensitizes colorectal cancer to chemotherapy
PNAS: What allows cancer cells to divide uncontrolled?

The cellular oncogenes and tumor suppressor genes are analogous to the accelerator and brake pedals in a car. If an oncogene is permanently active, similar to a stuck accelerator in a car, cells divide without restraints and a tumor develops.

The c-MYC proto-oncogene is activated aberrantly in about 50% of all tumors. As a result the c-MYC protein is produced in excessive amounts, which in turn activates processes associated with cell proliferation. A group of research scientists led by Prof. Heiko Hermeking (Institute of Pathology, Ruhr-University Bochum, Germany) has now identified a mechanism that allows c-MYC to drive cellular proliferation in the presence of substances that would lead to a block in cell division in normal cells, as for example chemotherapeutic agents.

“In future this knowledge may allow a more specific inhibition of tumor growth” Hermeking hopes. This study has been published in the current edition of the Proceedings of the National Academy of Sciences USA (PNAS).

Attractive target structure for cancer drugs

The c-MYC gene is a nodal point in the regulation of cellular division and is highly expressed in colorectal cancer and many other tumor types. The c-MYC protein is a transcription factor which regulates other genes, which in turn mediate the effects of c-MYC on cell proliferation. “In order to understand the origin of cancer it is therefore important to identify genes and mechanisms that mediate the effects of c-MYC on cells” Prof. Hermeking explained. Because of its central position in the regulation of cell proliferation c-MYC is an attractive target structure for cancer therapeutic agents.

Signaling chain unraveled in detail

Prof. Hermeking’s research team determined how c-MYC promotes proliferation. They were able to demonstrate that c-MYC activates the AP4 gene, which results in the synthesis of AP4 protein. AP4 protein in turn suppresses the formation of a central inhibitor of cellular division (p21) by occupying its regulatory region within the genome. Thereby tumor cells become refractory to substances, e.g. chemotherapeutic agents, which block cell division in normal cells.

Instead of terminating proliferation the tumor cells undergo cell death. Moreover, the scientists discovered that colorectal carcinomas, in contrast to normal colon tissue, generally produce large amounts of the AP4 protein. In the future, the knowledge about this signaling cascade could enable a more targeted prevention of cancer cell proliferation. The project is supported by the German Cancer Aid (Deutsche Krebshilfe e.V.).

Prof. Dr. Heiko Hermeking | alfa
Further information:
http://www.rub.de

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>