Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new family of Macrolepidoptera discovered

16.07.2015

After a long time puzzling over the moth Pseudobiston pinratanai, scientists have now described the new moth family Pseudobistonidae.

A moth searching for its relatives: it may take many years from the discovery of a species and its scientific description to its systematic classification. For the moth family “Pseudobistonidae” it took 26 years of research.


One collection specimen of Pseudobiston pinratanai in the lepidoptera collection of State Museum of Natural History Stuttgart.

Copyright: SMNS

Now an international research cooperation with experts from the Natural History Museums in Stuttgart and Bonn (Germany) scientifically described the new family. The results of this study have been published in the scientific journal Scripta Zoologica.

The first specimen of the moth Pseudobiston pinratanai was captured in 1989 in northern Thailand and was described in 1994 by Japanese lepidopterist Hiroshi Inoue.

This specimen belonged to an unknown species and genus. However, its higher systematic placement was also unclear. The combination of the morphological characters of Pseudobiston pinratanai at first did not allow a consistent classification within Macrolepidoptera. As no genetic data were available at that time, scientists could not solve the puzzle until much later.

Together with colleagues from the Natural History Museums in Bonn and Paris as well as the Universities of Vienna and Turku, Dr. Hossein Rajaei has worked since 2012 on a scientific research study to define the systematic position of Pseudobiston pinratanai. In a combined integrative approach of classic morphological and molecular methods, the scientists were able to unravel the systematic position of this enigmatic species. The molecular results confirmed what the experts had already suspected:

Pseudobiston pinratanai does not belong to the family of so-called geometer moths (Geometridae), but instead represents a separate lineage within Macrolepidoptera and shows a close relationship to the species-poor Asian family Epicopeiidae. In the second part of their study, the researchers found multiple morphological characters that confirmed the molecular results.

They compared characters of all major body parts, especially the head, thorax, and wings, and compared them to other families of Macrolepidoptera. Thus Pseudobiston pinratanai was assigned as sole member of the new family Pseudobistonidae.

“This research shows how important the synthesis of comparative and molecular genetic methods is for the determination of species. Integrative taxonomy, the interplay of these different methods, is a critical area of expertise of natural history research museums. The discovery of Pseudobistonidae also makes it clear how productive collaborations between natural history museums can be.

I congratulate my colleagues on this great success”, states Johanna Eder, director of the State Museum of Natural History in Stuttgart. “Integrative taxonomy must be seen as a very useful instrument to support scientific work within the framework of ecological research”, adds Prof. Dr. Bernhard Misof, Deputy Director of the Zoological Research Museum Alexander Koenig - Leibniz Institute for Animal Biodiversity in Bonn.

Establishing a new family of butterflies is a rare event: The last description of a new family of Macrolepidoptera was published over 20 years ago.

“We were able to explore family relationships and other characteristics during this extensive research, which has given us new insights into the evolution and development of butterflies. The discovery of a new family of large butterflies is for me of course spectacular”, enthuses Dr. Hossein Rajaei, entomologist and Lepidoptera expert at the State Museum of Natural History Stuttgart. Two specimen of Pseudobiston pinratanai are part of the collections of the State Museum of Natural History Stuttgart.

Source:
Rajaei H., Greve, C., Letsch, H., Stüning, D., Wahlberg, N., Minet, J., Misof, B. (2015). Advances in Geometroidea phylogeny, with characterization of a new family based on Pseudobiston pinratanai (Lepidoptera, Glossata). Scripta Zoologica. doi:10.1111/zsc.12108

Weitere Informationen:

http://onlinelibrary.wiley.com/doi/10.1111/zsc.12108/abstract
http://www.naturkundemuseum-bw.de
http://www.zfmk.de

Meike Rech | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht New yeast species discovered in Braunschweig, Germany
13.12.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

nachricht Saliva test shows promise for earlier and easier detection of mouth and throat cancer
13.12.2019 | Elsevier

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>