Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A neuron can cause a domino effect

01.03.2018

If the sense of smell disappears, this can indicate a disease such as Alzheimer's or Parkinson's disease. However, unlike previously assumed, general degenerations in the nervous system do not play a leading role in the loss of the sense of smell with increasing age, but individual nerve cells or classes of nerves are decisive.

Some nerve cells (neurons) or neuron classes in the brain seem to age faster than others. For example, the loss of the sense of smell is one of the first clinical signs of natural aging. This can be accompanied by a neurodegenerative disease such as Alzheimer’s.


The "flying genome": The genetic model fly Drosophila melanogaster was investigated for the current study by Prof. Grunwald Kadows' research group on how the odour of animals ages. (Photo: Ariane Böhm / TUM)

"Age is the major risk factor as to why people suffer from Alzheimer's or Parkinson's disease," says Prof. Ilona Grunwald Kadow from the School of Life Sciences at the Technical University of Munich (TUM) - "only a small proportion of these diseases are due to known genetic reasons".

The question is why do some neurons age faster than others? Why are some more sensitive? And is the damage to certain types of neurons the reason why whole nerve networks no longer function properly?

A new study conducted under the direction of Prof. Grunwald Kadow (TUM) in collaboration with the groups of Prof. Julien Gagneur (TUM), Prof. Stephan Sigrist (Free University of Berlin) and Prof. Nicolas Gompel (LMU) using the genetic model organism of the fruit fly now shows how the olfactory capacity of these animals ages and how much this resembles the aging process in the human olfactory system. Like humans, the fruit fly loses its powers of smell as it ages. Several key genes and mechanisms were identified that contribute to this aging - associated degeneration.

Which neurons are affected?

In the next step, the scientists examined whether all or only specific neurons of the olfactory circuit are affected. The team found that some neurons are more sensitive than others and decline faster during aging.

They determined that oxidative stress alters primarily specific neuron types, causing the functioning of the entire neural network to gradually collapse. Oxidative stress results in too many reactive oxygen compounds in the cell or tissue, which can cause temporary or permanent damage and accelerated aging.

Interestingly, if the formation of these reactive oxygen compounds in only this type of neurons is prevented, this completely stopped the loss of sense of smell: Old flies sense odors just like their young conspecifics again. This suggests that age-related degeneration could be significantly delayed by preventing oxidative damage in only one or a few neuron types.

But what can reduce oxidative stress in its effect?

A trial with an antioxidant in the form of several weeks of resveratrol administration in younger flies showed that it can counteract oxidative stress, which develops during aging. This treatment appeared to protect the particularly sensitive neurons and thereby contributed to maintaining the function of the neurons connected to them within the neural network. In the elderly, such treatments might help to delay the onset of neurodegenerative diseases associated with ageing.

Another possible factor that could play a role in the aging process is the intestinal microbiome. It could be involved in the progression of Parkinson's disease. Grunwald Kadow and her team have therefore also tested the effect of specific microbiota on olfactory ageing in fruit flies with the result that certain bacteria have a positive effect and slow down olfactory neurodegeneration.

According to Prof. Grunwald Kadow, these findings and further ongoing experiments in the fruit fly model can help to pave the way for more targeted and new treatments and therapy routes, in which, among other things, drug or microbiota administration would be combined with each other.

Publication:

Ashiq Hussain, Atefeh Pooryasin, Mo Zhang, Laura F. Loschek, Marco La Fortezza, Anja B. Friedrich, Catherine-Marie Blais, Habibe K. Üçpunar, Vicente A. Yépez, Martin Lehmann, Nicolas Gompel, Julien Gagneur, Stephan J. Sigrist and Ilona C. Grunwald Kadow: Inhibition of oxidative stress in cholinergic projection neurons fully rescues aging-associated olfactory circuit degeneration in Drosophila, eLife 1/2018. doi: 10.7554/eLife.32018 elifesciences.org/articles/32018

Contact:

Prof. Dr. Ilona Grunwald Kadow
Technical University of Munich
Professorship of Neuronal Control of Metabolism
Phone: +49/8161/71 2440
Mail: ilona.grunwald@tum.de

Weitere Informationen:

https://www.tum.de/nc/en/about-tum/news/press-releases/detail/article/34509/ Article
https://mediatum.ub.tum.de/1432809?id=1432809 Pictures for editorial coverage

Dr. Ulrich Marsch | Technische Universität München

More articles from Life Sciences:

nachricht Elusive compounds of greenhouse gas isolated by Warwick chemists
18.09.2019 | University of Warwick

nachricht Study gives clues to the origin of Huntington's disease, and a new way to find drugs
18.09.2019 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Stroke patients relearning how to walk with peculiar shoe

18.09.2019 | Innovative Products

Statistical inference to mimic the operating manner of highly-experienced crystallographer

18.09.2019 | Physics and Astronomy

Scientists' design discovery doubles conductivity of indium oxide transparent coatings

18.09.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>