Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A longer lasting tumor blocker

29.04.2009
On the heels of dismaying reports that a promising antitumor drug could, in theory, shorten patients' long-term survival, comes a promising study by a Japanese team of researchers that suggests a potentially better option. The study appears in the May 11 issue of the Journal of Experimental Medicine (online April 27).

Many cancer treatments work by disrupting the formation of new blood vessels that feed growing tumors. Agents that block a vessel-promoting factor called VEGF have shown promise in human clinical trials.

But recent studies in mice show that when treatment stops, tumor growth rapidly resumes. Now, Yoshiaki Kubota and colleagues find that blocking a different molecule, called M-CSF, suppressed tumor growth even after treatment was stopped.

Kubota and his team compared the efficacy of inhibitors against M-CSF and VEGF in mice with a certain kind of bone tumor. Three weeks of anti-VEGF treatment suppressed tumor growth but, similar to other recent reports, the tumors bounced back when the drug treatment was curtailed. Tumor growth in mice on a similar regiment of an M-CSF inhibitor remained suppressed in the absence of drug.

Another distinction between the two inhibitors was the type of vessel growth that was blocked. Blocking VEGF prevented dangerous vessels from growing such as those that feed tumors. But it also stopped beneficial vessels from growing, such as those that help injured tissues heal. Blocking M-CSF, on the other hand, only impeded bad vessel growth.

Most likely, the anti–M-CSF treatment had a lasting effect because it resulted in damage to the scaffolding that surrounds cancerous vessels, robbing the tumors of the structural support they need to grow. Meanwhile, the scaffold of mice treated with anti-VEGF remained intact.

M-CSF levels soar in patients with osteosarcoma (a malignant bone cancer), breast cancer and prostate cancer, making these cancers potentially the most responsive to M-CSF-blocking drugs Whether or not other types of cancer rely more on M-CSF than on VEGF for their blood supply remains unknown.

Amy Maxmen | EurekAlert!
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>