Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A glow of recognition

15.12.2011
New detectors developed at MIT could provide easy visual identification of toxins or pathogens.

Researchers at MIT have developed a new way of revealing the presence of specific chemicals — whether toxins, disease markers, pathogens or explosives. The system visually signals the presence of a target chemical by emitting a fluorescent glow.


The approach combines fluorescent molecules with an open scaffolding called a metal-organic framework (MOF). This structure provides lots of open space for target molecules to occupy, bringing them into close proximity with fluorescent molecules that react to their presence.

The findings were reported in the Journal of the American Chemical Society in a paper by assistant professor of chemistry Mircea Dincã, with postdoc Natalia Shustova and undergraduate student Brian McCarthy, published online in November and to appear in a forthcoming print issue.

The work could have significant applications in sensors attuned to specific compounds whose detection could be read at a glance simply by watching for the material to glow. “A lot of known sensors work in reverse,” Dincã says, meaning they “turn off” in the presence of the target compound. “Turn-on sensors are better,” he says, because “they’re easier to detect, the contrast is better.”

Mark Allendorf, a research scientist at Sandia National Laboratory, who was not involved in this work, agrees. “Present materials generally function via luminescence quenching,” and thus “suffer from reduced detection sensitivity and selectivity,” he says. “Turn-on detection would address these limitations and be a considerable advance.”

For example, if the material is tuned to detect carbon dioxide, “the more gas you have, the more intensity in the response,” making the device’s readout more obvious. And it’s not just the presence or absence of a specific type of molecule: The system can also respond to changes in the viscosity of a fluid, such as blood, which can be an important indicator in diseases such as diabetes. In such applications, the material could provide two different indications at once — for example, changing in color depending on the presence of a specific compound, such as glucose in the blood, while changing in intensity depending on the viscosity.

MOF materials were first produced about 15 years ago, but their amazing porosity has made them a very active area of research. Although they simply look like little rocks, the sponge-like structures have so much internal surface area that one gram of the material, if unfolded, would cover a football field, Dincã says.

The material’s inner pores are about one nanometer (one billionth of a meter) across, making them “about the size of a small molecule” and well suited as molecular detectors, he says.

The new material is based on the MIT team’s discovery of a way to bind a certain type of fluorescent molecules, also known as chromophores, onto the MOF’s metal atoms. While these particular chromophores cannot emit light by themselves, they become fluorescent when bunched together. When in bunches or clumps, however, target molecules cannot reach them and therefore cannot be detected. Attaching the chromophores to nodes of the MOF’s open framework keeps them from clumping, while also keeping them close to the empty pores so they can easily respond to the arrival of a target molecule.

Ben Zhong Tang, a professor of chemistry at the Hong Kong University of Science and Technology, who was not involved in this work, says the MIT researchers have taken “an elegant approach” to producing functional MOFs, and “have already demonstrated the utility of their MOFs for detection and differentiation of normally difficult-to-distinguish” molecules called volatile organic compounds.

Tang says the new system still needs further refinement to improve the efficiency of production, which he says should be easily accomplished. Once that is achieved, he says, it could find many uses. “Many more applications may be envisioned: For example, the MOFs may serve as smart vehicles and monitors for controlled drug deliveries,” with the additional benefit that “the fluorescence should be gradually weakened in intensity along with progressive release of the drugs, thus enabling in situ real-time monitoring of the drug release profiles.” But for now, he says, “the work is excellent in terms of proof of concept.”

The work was supported by MIT’s Center for Excitonics, an Energy Frontier Research Center funded by the U.S. Department of Energy, and by the National Science Foundation.

Caroline McCall | EurekAlert!
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>