Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A New Coat for Golden Rods

12.12.2011
Gold isn’t just lovely in jewelry; it has long been used as medicine. Modern medicine is particularly focused on nanoscopic gold, which can be used as a contrast agent and in the treatment of cancer.

In the journal Angewandte Chemie, Eugene R. Zubarev and his team at Rice University in Houston (Texas, USA) have now introduced a new pretreatment process for gold nanorods that could accelerate their use in medical applications.

How can tiny rods of gold help to fight cancer? Cancer cells are more sensitive to temperature than healthy tissue, and this fact can be exploited through local heating of the affected parts of the body. This is where the gold nanorods come into play. They can be introduced into the cancer cells and the diseased areas irradiated with near-infrared light (photoinduced hyperthermia). The rods absorb this light very strongly and transform the light energy into heat, which they transfer to their surroundings.

Gold nanorods are normally produced in a concentrated solution of cetyl trimethylammonium bromide (CTAB) and are thus coated in a double layer of CTAB. The CTAB is only deposited onto the surface, not chemically bound. In an aqueous environment, the CTAB molecules slowly dissolve. This is problematic because CTAB is highly toxic. Simply leaving out the CTAB is no solution because without this coating the nanorods would clump together.

In order to make the rods stable as well as biocompatible, various more or less complex methods of pretreatment have been developed. However, for many of these processes, it is not known how much of the toxic CTAB remains on the nanorods. Another problem is that the pretreatment can disrupt the uptake of the nanorods into cells, which drastically reduces the success of photothermal cancer treatment.

Zubarev and his co-workers have now developed a new strategy that solves these problems: they replaced the CTAB with a variant that contains a sulfur-hydrogen group, abbreviated as MTAB. With various analytical processes, the scientists have been able to prove that the CTAB on these nanorods is completely replaced with an MTAB layer. The MTAB molecules chemically bond to gold nanorods through their sulfur atoms. They bind so tightly that the layer stays in place even in an aqueous solution and the rods can even be freeze-dried. They can be stored indefinitely as a brown powder and dissolve in water again within seconds.

Tests on cell cultures demonstrate that MTAB gold nanorods are not toxic, even at higher concentrations. In addition, they are absorbed in large amounts by tumor cells. The scientists estimate that under the conditions of their experiment, a single cell takes up more than two million nanorods. This would make effective photothermal tumor treatment possible.
About the Author
Dr Eugene Zubarev is an Associate Professor of Chemistry at Rice University, and has been working in the area of nanochemistry and nanomaterials for over 15 years. He is the recipient of the National Science Foundation Career Award and Alfred P. Sloan Research Fellowship.
Author: Eugene R. Zubarev, Rice University, Houston (USA), http://www.owlnet.rice.edu/~zubarev/group.htm
Title: Quantitative Replacement of Cetyl Trimethylammonium Bromide by Cationic Thiol Ligands on the Surface of Gold Nanorods and Their Extremely Large Uptake by Cancer Cells

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201107304

Eugene R. Zubarev | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>