Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A clear view through trees

29.11.2010
Large tree-like sugar clusters provide potential in vivo probes for cancer cells

Challenges in isolating and synthesizing protein-bound sugar molecules called N-glycans, which help stabilize insulin levels and modulate antibody-dependent immune responses among many other important processes in the body, has limited the investigation of their function and interaction with cultured cells and dissected tissues.

Now, a team led by Yasuyoshi Watanabe and Satoshi Nozaki from the RIKEN Center for Molecular Imaging Science (CMIS), Kobe, has developed the first series of fluorescent and radioactive probes to track these molecules in living animals, which may eventually be used to track tumors¹.

According to Nozaki, N-glycans, which contain sialic acid residues, always form clusters in vivo allowing them to maximize their interactions and selectivity towards N-glycan-binding proteins and other biomolecules. “It is rather rare that a single molecule of N-glycan shows significant biological activity,” he says.

To recreate these in vivo conditions, the researchers worked in close collaboration with Katsunori Tanaka from Osaka University to attach up to 16 sugar molecules to branched lysine oligopeptides, creating the largest tree-like oligosaccharide cluster ever prepared (Fig. 1). After linking the clusters to fluorescent and radioactive labels, they injected the resulting probes into the tail vein of immunodeficient mice.

Positron emission tomography (PET) imaging showed that the number of glycans in the clusters determined their lifetime in vivo. Four- and eight-sugar clusters rapidly disappeared through the kidney in just one hour. Clusters containing 16 N-glycans, however, remained in the body for over four hours before being eliminated through the kidney and the gallbladder—a desirable feature when studying how N-glycans travel in living subjects.

Furthermore, the team discovered that differences in the way the sialic acids are connected to the N-glycans influenced cluster behavior and build up in specific organs. The so-called (2–6)-linked sialic acids stabilized the clusters in serum, leading to their accumulation in the liver through interactions with specific protein receptors. In contrast, their (2–3)-linked congeners rapidly cleared through the bladder. Also, fluorescence imaging revealed that clusters bearing both types of linkages were most fluorescent in the spleen, suggesting their capture by a part of the immune system called the reticuloendothelial system.

The researchers hope to use these clusters as molecular probes for tumors. They are also planning to prepare clusters consisting of three to four different glycans in order to enhance the selectivity of the probes toward tumors and specific organs. “Nobody has done it, but the data shows that we can achieve it,” says Nozaki.

The corresponding author for this highlight is based at the Molecular Probe Dynamics Laboratory, RIKEN Center for Molecular Imaging Science

Journal information

Tanaka, K., Siwu, E.R.O., Minami, K., Hasegawa, K., Nozaki, S., Kanayama, Y., Koyama, K., Chen, W. C., Paulson, J. C., Watanabe, Y. & Fukase, K. Noninvasive imaging of dendrimer-type N-Glycan clusters: in vivo dynamics dependence on oligosaccharide structure. Angewandte Chemie International Edition 49, 8195–8200 (2010).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6453
http://www.researchsea.com

More articles from Life Sciences:

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Protein droplets keep neurons at the ready and immune system in balance
16.08.2018 | Howard Hughes Medical Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

3D inks that can be erased selectively

16.08.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>