Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A cell senses its own curves: New research from the MBL Whitman Center

29.04.2016

Can a cell sense its own shape? Working in the Marine Biological Laboratory's Whitman Center, scientists from Dartmouth College developed an ingenious experiment to ask this question. Their conclusion - Yes - is detailed in a recent paper in the Journal of Cell Biology.

"Cells adopt diverse shapes that are related to how they function. We wondered if cells have the ability to perceive their own shapes, specifically, the curvature of the [cell] membrane," says Drew Bridges, a Ph.D. candidate in the laboratory of Amy Gladfelter, associate professor of biological sciences at Dartmouth College and a scientist in the MBL's Whitman Center.


This image shows the filamentous fungus Ashbya gossypii. The plasma membrane is visualized in magenta (FM-464), and the septin Cdc11a-GFP is in green.

Credit: Andrew Bridges

The team focused on the septins, proteins that are usually found near micron-scaled curves in the cell membrane, such as the furrow that marks where the cell will pinch together and divide.

Using live-cell imaging at the MBL, they noticed that septins in a novel model system, the fungus Ashbya gossypii, tended to congregate on fungus branches where curvature was highest.

They then decided to recreate this natural phenomenon in the lab, using artificial materials they could measure more easily than living cells. Using precisely scaled glass beads coated with lipid membranes, they discovered that septin proteins preferred curves in the 1-3 micron range.

They got the same result using human or fungal septins, suggesting that this phenomenon is evolutionarily conserved.

"This ability of septins to sense micron-scaled cell curvature provides cells with a previously unknown mechanism for organizing themselves," Bridges says.

The idea for the glass bead experiment came from "many rich intellectual discussions with other members of the MBL community," says Bridges, who has accompanied Gladfelter to the MBL each summer since 2012. "Both our collaborations and the imaging resources at MBL were central to this work."

###

Citation:

Bridges, A. A., Jentzsch, M.S., Oakes, P.W., Occhipinti, P., and Gladfelter, A.S. (2016) Micron-scale plasma membrane curvature is recognized by the septin cytoskeleton. J Cell Biol 213:23-32, doi:10.1083/jcb.201512029.

The Marine Biological Laboratory (MBL) is dedicated to scientific discovery - exploring fundamental biology, understanding marine biodiversity and the environment, and informing the human condition through research and education. Founded in Woods Hole, Massachusetts in 1888, the MBL is a private, nonprofit institution and an affiliate of the University of Chicago.

Media Contact

Diana Kenney
dkenney@mbl.edu
508-289-7139

 @mblscience

http://www.mbl.edu 

Diana Kenney | EurekAlert!

More articles from Life Sciences:

nachricht Microbes can grow on nitric oxide (NO)
18.03.2019 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Novel methods for analyzing neural circuits for innate behaviors in insects
15.03.2019 | Kanazawa University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

How heavy elements come about in the universe

18.03.2019 | Physics and Astronomy

Robot arms with the flexibility of an elephant’s trunk

18.03.2019 | Power and Electrical Engineering

Microbes can grow on nitric oxide (NO)

18.03.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>