Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A cell that is ‘adrift’ is not able to divide normally

16.09.2008
Researchers of VTT and the University of Turku discover new information on cancer generation mechanisms

A joint research group of VTT Technical Research Centre of Finland and the University of Turku, led by Professor Johanna Ivaska, has discovered why cells require surrounding tissue in order to be able to divide.

By doing so, the group has solved a mystery that has puzzled cancer researchers for decades. The research results show why a cell which is ‘adrift’, i.e. separated from the surrounding tissue, is not able to divide normally. This causes changes in the cell’s genotype which expose the body to cancer.

For decades, researchers have known that human cells must be in their right place in the body, surrounded by tissue, in order for them to be able to divide normally. When separated from the rest of the tissue, normal cells are not able to divide and will thus die.

Microscopic images taken by the group’s doctoral researchers, Saara Tuomi and Teijo Pellinen, revealed that a dividing cell anchors itself during the various stages of division by using cell adhesion receptors called integrins. A cell with malfunctioning anchoring molecules will become adrift and start to divide abnormally and thus acquire the potential to become a cancer cell. The research group also uncovered evidence, in cooperation with a research group led by professor Olli Kallioniemi, that the anchoring mechanism had been disturbed in some cases of ovarian cancer and in some prostate cancer metastases.

The finding supports the hypothesis proposed by scientists at the beginning of the last century that abnormal cell division is one of the mechanisms in the development of cancer.

The research results open an entirely new perspective on the early stages of the development of cancer and how the changes occurring in cancerous tissue enable the cancer to continuously become a more malignant and more aggressive tumour. When cells become independent of their anchoring mechanisms, a vicious circle is created: genotype changes occurring at an ever-increasing pace enable the disease to become more and more aggressive.

The research results were published on 16 September 2008 in Developmental Cell, a leading journal in cell and developmental biology. The results will have an impact on the future direction of cancer research.

Publication: Pellinen T., Tuomi S., Arjonen A., Wolf M., Edgren H., Meyer H., Grosse R., Kitzing T., Rantala JK., Kallioniemi O., Fässler R., Kallio M., and Ivaska J. (2008), Integrin traffic regulated by Rab21 is necessary for cytokinesis. (Developmental Cell).

For further information, please contact:

VTT Technical Research Centre of Finland
Professor Johanna Ivaska
tel. +358 20 722 2807, johanna.ivaska@vtt.fi
Information on VTT:
Irma Lind
Marketing Communications Manager
Tel. +358 20 722 6742
irma.lind@vtt.fi

Irma Lind | VTT
Further information:
http://www.vtt.fi

Further reports about: Cell Molecule Tissue VTT cell’s genotype mechanism normally

More articles from Life Sciences:

nachricht Nonstop Tranport of Cargo in Nanomachines
20.11.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Researchers find social cultures in chimpanzees
20.11.2018 | Universität Leipzig

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>