Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A New Breast Cancer Susceptibility Gene

02.04.2012
Mutations in a gene called XRCC2 cause increased breast cancer risk, according to a study published today in the American Journal of Human Genetics. The study looked at families that have a history of the disease but do not have mutations in the currently known breast cancer susceptibility genes.

Sean Tavtigian, Ph.D., a Huntsman Cancer Institute (HCI) investigator and associate professor in the Department of Oncological Sciences at the University of Utah (U of U) is one of three co-principal investigators on the study, along with David Goldgar, Ph.D., professor in the Department of Dermatology at the U of U and an HCI investigator, and Melissa Southey, Ph.D., professor in the Department of Pathology at the University of Melbourne, Australia.

“We have added to the list of genes that harbour mutations causing breast cancer,” said Tavtigian. “This knowledge will improve breast cancer diagnostics and add years to patients’ lives. More important, relatives who have not been affected by the disease but carry the mutations will benefit even more. They can find out they are at risk before they have cancer and take action to reduce their risk or catch the cancer early.”

XRCC2 may also provide a new target for chemotherapy. “A type of drug called a PARP inhibitor appears to kill tumor cells that have gene mutations in a particular DNA repair pathway. XRCC2 is in this pathway, as are BRCA1 and BRCA2. It’s reasonably likely that a breast cancer patient who has a mutation in XRCC2 will respond well to treatment with PARP inhibitors,” said Tavtigian.

According to Tavtigian, many breast cancer cases appear in families with a weak history of the disease. Only about 30 percent of the familial risk for breast cancer can be explained by a combination of mutations to and common sequence variation in the known breast cancer susceptibility genes. “So far most of the clinical diagnostic effort has been directed toward the very strong family history set of breast cancer cases and their close relatives,” he said. “Our research looks at a population with a weaker family history, and as it turns out, a very rare gene mutation.”

The researchers used a technology called exome capture massively parallel sequencing (exome sequencing), which shows the exact order of the nucleotides (the four building blocks of DNA) in all of the protein coding genes in the human genome. The ability of this technology to analyze the DNA of all of the genes in the genome in a single experiment, according to Tavtigian, makes it an amazingly powerful tool for genetic research. “We focused on the genes involved in a particular type of DNA repair, because most known breast cancer genes have been found there. That focused analysis allowed us to identify XRCC2 as a breast cancer susceptibility gene in individuals with a family history of breast cancer,” says Tavtigian. “From the exome sequencing data, we found two different types of XRCC2 mutations that occur in breast cancer patients.”

He explains that one type of mutation causes the gene to create an incomplete version of the protein. The resulting protein is usually dysfunctional. The other type occurs when a single amino acid in the protein is changed.

“It’s a subtle change to the protein, but the resulting change in function could range anywhere from innocuous to even worse dysfunction than the incomplete protein causes,” says Tavtigian. “Our sequence analyses suggest that we may have found the full spectrum of results in our study.”

Further research is underway. “A worldwide effort has already been launched to figure out what fraction of breast cancer is due to mutations in this gene and how high the risk conferred by these mutations actually is,” he says.

The article lists 30 co-authors from HCI, the U of U, and other research organizations based in North America, Australia, and Europe. The study was supported by funding from the National Institutes of Health (R01CA155767 and R01CA121245) plus several other worldwide research foundations. The study also benefited from resources gathered by the Breast Cancer Family Registry, the Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer, and several other breast cancer research efforts taking place around the world.

The mission of Huntsman Cancer Institute (HCI) at the University of Utah is to understand cancer from its beginnings, to use that knowledge in the creation and improvement of cancer treatments, to relieve the suffering of cancer patients, and to provide education about cancer risk, prevention, and care. HCI is a National Cancer Institute-Designated cancer center, which means that it meets the highest national standards for cancer care and research and receives support for its scientific endeavors. HCI is also a member of the National Comprehensive Cancer Network (NCCN), a not-for-profit alliance of the world’s leading cancer centers that is dedicated to improving the quality and effectiveness of care provided to patients with cancer. For more information about HCI, please visit www.huntsmancancer.org.

Linda Aagard | Newswise Science News
Further information:
http://www.huntsmancancer.org

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>