A new biological sensor detects and analyses DNA sequences

The LIA group has submitted a patent application for the design of this logical DNA sensor. These sensors are able to represent logical implications (or IF-THEN rules), like, for example, IF symptom 1 and symptom 2 are present, THEN the disease is A, or IF the disease is B, THEN symptoms 2 and 3 must be present.

The sensors are able to use these logical rules to autonomously run logical inference processes on the genetic input signals and reach accurate diagnoses.

Using these intelligent DNA sensors as basic building blocks, the aim is to develop in vitro systems capable of autonomously detecting a set of input symptoms and output a diagnosis or release the right drug.

These biological sensors (built with DNA to process DNA) are considered bionanotechnological devices and are part of a discipline called DNA computing or biomolecular computing. This discipline aims to build and program devices manufactured with biomolecules, such as, for example, DNA strands to process information likewise encoded in other biomolecules.

In short, there is a need to develop and manufacture biological sensors capable of precisely detecting complex combinations of genetic signals and autonomously issuing the respective diagnoses.

The bionanotechnological devices developed by the UPM's LIA group at the Facultad de Informática are a response to this need.

Media Contact

Eduardo Martínez alfa

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors