Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

5-limbed brittle stars move bilaterally, like people

10.05.2012
Brainless organisms choose a central arm and head that way

It appears that the brittle star, the humble, five-limbed dragnet of the seabed, moves very similarly to us.


The brittle star doesn’t turn as most animals do. It simply designates another of its five limbs as its new front and continues moving forward. Credit: Henry Astley/Brown University

In a series of first-time experiments, Brown University evolutionary biologist Henry Astley discovered that brittle stars, despite having no brain, move in a very coordinated fashion, choosing a central arm to chart direction and then designating other limbs to propel it along. Yet when the brittle star wants to change direction, it designates a new front, meaning that it chooses a new center arm and two other limbs to move. Brittle stars have come up with a mechanism to choose any of its five limbs to be central control, each capable of determining direction or pitching in to help it move.

The findings are published in the Journal of Experimental Biology.

Many animals, including humans, are bilaterally symmetrical — they can be divided into matching halves by drawing a line down the center. In contrast, brittle stars are pentaradially symmetrical: There are five different ways to carve them into matching halves. Whereas bilateral symmetrical organisms have perfected locomotion by designating a "head" that charts direction and then commands other body parts to follow suit, radial symmetrical animals have no such central directional control.

"What brittle stars have done is throw a wrench into the works," Astley said. "Even though their bodies are radially symmetrical, they can define a front and basically behave as if they're bilaterally symmetrical and reap the advantages of bilateral symmetry."

"For an animal that doesn't have a central brain, they're pretty remarkable," said Astley, the sole author of the paper.

Astley decided to study brittle stars after noticing that their appendages acted much like a snake's body, capable of coiling and unfurling from about any angle. Yet when watched brittle stars move about, he couldn't figure out how the individual arms were coordinating. "It was too confusing," said the fourth-year graduate student in the Department of Ecology and Evolutionary Biology. "There's no obvious front. There are five arms that are all moving, and I'm trying to keep track of all five while the (central body) disc was moving."

He decided to take a closer look, which, surprisingly, no other scientist had done. On a trip to Belize in January 2009 led by professor and department chair Mark Bertness, Astley plopped thick-spined brittle stars (Ophiocoma echinata) into an inflatable pool and filmed them. The animals were willing subjects. "They hate being exposed," Astley said, "so we put them in the middle of this sandy area and they'd move."

To move, brittle stars usually designate one arm as the front, depending on which direction it seeks to go. An arm on either side of the central arm then begins a rowing motion, much like a sea turtle, Astley said. The entire sequence of movement takes about two seconds. "They're pretty slow in general," Astley said.

To turn, the brittle star chooses a new center arm and the accompanying rowing arms to move it along. "If we as animals need to turn, we need to not only change the direction of movement, but we have to rotate our bodies," Astley explained. "With these guys, it's like, 'Now, that's the front. I don't have to rotate my body disk.'"

Oddly, the brittle star also chooses another type of locomotion — that to bilaterals would appear to be moving backward — about a quarter of the time, Astley documented. In this motion, the animal keeps the same front, but now designates the non-forward-rowing motion limbs to move it. The question, then, is why doesn't the brittle star define a new front and simply move forward? "There's clearly something that determines that," Astley said. "It could be the relative stimulus strength on the arms."

The research was funded by the private Bushnell Foundation.

David Orenstein | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht New gene potentially involved in metastasis identified
26.03.2019 | Institute of Science and Technology Austria

nachricht Decoding the genomes of duckweeds: low mutation rates contribute to low genetic diversity
26.03.2019 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New gene potentially involved in metastasis identified

Gene named after Roman goddess Minerva as immune cells get stuck in the fruit fly’s head

Cancers that display a specific combination of sugars, called T-antigen, are more likely to spread through the body and kill a patient. However, what regulates...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Listening to the quantum vacuum

26.03.2019 | Physics and Astronomy

The struggle for life in the Dead Sea sediments: Necrophagy as a survival mechanism

26.03.2019 | Earth Sciences

Mangroves and their significance for climate protection

26.03.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>