Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

30 years after C60: Fullerene Chemistry with Silicon

19.03.2015

Goethe University chemists have managed to synthesise a compound featuring an Si20 dodecahedron. The Platonic solid, which was published in the "Angewandte Chemie" journal, is not just aesthetically pleasing, it also opens up new perspectives for the semiconductor industry.

The discovery of the soccer ball-shaped C60 molecule in 1985 was a milestone for the development of nanotechnology. In parallel with the fast-blooming field of research into carbon fullerenes, researchers have spent a long time trying in vain to create structurally similar silicon cages.


Silafulleran

GU

Goethe University chemists have now managed to synthesise a compound featuring an Si20 dodecahedron. The Platonic solid, which was published in the "Angewandte Chemie" journal, is not just aesthetically pleasing, it also opens up new perspectives for the semiconductor industry.

The Si20 dodecahedron is roughly as large as the C60 molecule. However, there are some crucial differences between the types of bonding: All of the carbon atoms in C60 have a coordination number of three and form double bonds. In the silicon dodecahedron, in contrast, all atoms have a coordination number of four and are connected through single bonds, so that the molecule is also related to dodecahedrane (C20H20).

"In its day, dodecahedrane was viewed as the 'Mount Everest' of organic chemistry, because it initially could only be synthesized through a 23- step sequence. In contrast, our Si20 cage can be created in one step starting from Si2 building blocks," explains Prof. Matthias Wagner of the Goethe University Institute of Inorganic and Analytical Chemistry.

The Si20 hollow bodies, which have been isolated by his PhD student, Jan Tillmann, are always filled with a chloride ion. The Frankfurt chemists therefore suppose that the cage forms itself around the anion, which thus has a structure-determining effect. On its surface, the cluster carries eight chlorine atoms and twelve Cl3Si groups.

These have highly symmetric arrangements in space, which is why the molecule is particularly beautiful. Quantum chemical calculations carried out by Professor Max C. Holthausen's research group at Goethe University show that the substitution pattern that was observed experimentally indeed produces a pronounced stabilisation of the Si20 structure.

In future, Tillmann and Wagner are planning to use the surface-bound Cl3Si anchor groups to produce three dimensional nanonetworks out of Si20 units. The researchers are particularly interested in the application potential of this new compound:

"Spatially strictly limited silicon nanoparticles display fundamentally different properties to conventional silicon wafers," explains Matthias Wagner. The long strived-for access to siladodecahedrane thus opens up the possibility of studying the fundamental electronic properties of cage-like Si nanoparticles compared to crystalline semiconductor silicon.

Publication
J. Tillmann et al: One-Step Synthesis of a [20]Silafullerane with an Endohedral Chloride
Ion, in: Angew. Chem. Int. Ed. 2015, DOI: 10.1002/anie.201412050

Download an image from: http://www.muk.uni-frankfurt.de/54612947?

Information: Prof. Matthias Wagner, Institute for Anorganic and Analytic Chemistry, Campus Riedberg, phone: +49(069)798-29156, email: Matthias.Wagner@chemie.uni-frankfurt.de

Goethe University is a research-oriented university in the European financial centre Frankfurt Founded in 1914 with purely private funds by liberally-oriented Frankfurt citizens, it is dedicated to research and education under the motto "Science for Society" and to this day continues to function as a "citizens’ university". Many of the early benefactors were Jewish. Over the past 100 years, Goethe University has done pioneering work in the social and sociological sciences, chemistry, quantum physics, brain research and labour law. It gained a unique level of autonomy on 1 January 2008 by returning to its historic roots as a privately funded university. Today, it is among the top ten in external funding and among the top three largest universities in Germany, with three clusters of excellence in medicine, life sciences and the humanities.

Publisher The President of Goethe University, Marketing and Communications Department, 60629 Frankfurt am Main
Editor: Dr. Anke Sauter, Science Editor, International Communication, Tel: +49(0)69 798-12498, Fax +49(0)69 798-761 12531, sauter@pvw.uni-frankfurt.de
Internet: www.uni-frankfurt.de 

Dr. Anke Sauter | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>