Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2-pronged protein attack could be source of SARS virulence

02.11.2009
Ever since the previously unknown SARS virus emerged from southern China in 2003, University of Texas Medical Branch at Galveston virologists have focused on finding the source of the pathogen's virulence — its ability to cause disease. In the 2003 epidemic, for example, between 5 and 10 percent of those who fell sick from the SARS virus died, adding up to more than 900 fatalities worldwide.

Now, UTMB researchers have uncovered what they believe could be the major factor contributing to the SARS virus' virulence: the pathogen's use of a single viral protein to weaken host cell defenses by launching a "two-pronged" attack on cellular protein-synthesis machinery.

Their results show that copies of this viral protein, known as nsp1, directly interferes with the tiny cellular machines called ribosomes, which make the proteins, such as interferon beta, that are crucial for immune defense. (If the word "ribosome" sounds familiar, it's probably because the three scientists who first determined what the miniature protein factories look like and how they function won the 2009 Nobel Prize for Chemistry.) Nsp1 is also involved in degrading the biochemical messages that are decoded by these ribosomes to produce such proteins.

"This SARS virus protein, nsp1, binds to ribosomes to inactivate them and also modifies messenger RNA molecules to make them unreadable," said UTMB professor Shinji Makino, senior author of a paper on the discovery appearing in the online edition of Nature Structure and Molecular Biology. "We think that this property of nsp1 could be a major player in the virulence of SARS."

Makino and the article's other authors — postdoctoral fellows Wataru Kamitani, Cheng Huang and Kumari Lokugamage, and senior research scientist Krishna Narayanan — identified nsp1's dual effect with a series of experiments mainly done using purified nsp1 protein in a special "cell-free" system. This widely used test-tube platform, known as a "rabbit reticulocyte lysate" (RRL) system, contained only the subcellular structures and materials (ribosomes, amino acids and various control factors) that cells use to produce or "translate" proteins from messenger-RNA templates.

The researchers also developed a mutant form of the nsp1 protein that was incapable of interfering with RNA translation, employing it as an experimental control.

By measuring the outcomes produced by mixing a variety of different messenger-RNA templates with either nsp1 or mutant nsp1 in RRL, the investigators generated a strikingly detailed picture of how nsp1 interferes with ribosomes and degrades messenger RNA. Nsp1 grabs on to ribosomes, attaching to a specific part known as the 40s subunit to shut down protein production Meanwhile, the messenger RNA molecules being translated into proteins on these ribosomes are degraded by processes tied to nsp1.

"This is interesting in part because it's a new mechanism — no other known protein uses this strategy," Makino said. "But there are more practical reasons why it's important to understand viral virulence factors, particularly when you consider the potential need for treatments. There are viruses similar to SARS circulating in China, and we have no way of knowing whether this virus may come back."

The U.S. Public Health Service and the James W. McLaughlin Foundation supported this work.

About UTMB

UTMB was established in 1891. The 84-acre campus includes four schools, three institutes for advanced study, a major medical library, a network of hospitals and clinics that provide a full range of primary and specialized medical care and numerous research facilities. UTMB is a component of the University of Texas System.

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superconducting vortices quantize ordinary metal

Russian researchers together with their French colleagues discovered that a genuine feature of superconductors -- quantum Abrikosov vortices of supercurrent -- can also exist in an ordinary nonsuperconducting metal put into contact with a superconductor. The observation of these vortices provides direct evidence of induced quantum coherence. The pioneering experimental observation was supported by a first-ever numerical model that describes the induced vortices in finer detail.

These fundamental results, published in the journal Nature Communications, enable a better understanding and description of the processes occurring at the...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Rapid water formation in diffuse interstellar clouds

25.06.2018 | Physics and Astronomy

Using tree-fall patterns to calculate tornado wind speed

25.06.2018 | Earth Sciences

'Stealth' material hides hot objects from infrared eyes

25.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>