Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

1 region, 2 functions: Brain cells' multitasking key to understanding overall brain function

07.03.2013
A region of the brain known to play a key role in visual and spatial processing has a parallel function: sorting visual information into categories, according to a new study by researchers at the University of Chicago.

Primates are known to have a remarkable ability to place visual stimuli into familiar and meaningful categories, such as fruit or vegetables. They can also direct their spatial attention to different locations in a scene and make spatially-targeted movements, such as reaching.

The study, published in the March issue of Neuron, shows that these very different types of information can be simultaneously encoded within the posterior parietal cortex. The research brings scientists a step closer to understanding how the brain interprets visual stimuli and solves complex tasks.

"We found that multiple functions can be mapped onto a particular region of the brain and even onto individual brain cells in that region," said study author David Freedman, PhD, assistant professor of neurobiology at the University of Chicago. "These functions overlap. This particular brain area, even its individual neurons, can independently encode both spatial and cognitive signals."

Freedman studies the effects of learning on the brain and how information is stored in short-term memory, with a focus on the areas that process visual stimuli. To examine this phenomenon, he has taught monkeys to play a simple video game in which they learn to assign moving visual patterns into categories.

"The task is a bit like a baseball umpire calling balls and strikes," he said, "since the monkeys have to sort the various motion patterns into two groups, or categories."

The monkeys master the tasks over a few weeks of training. Once they do, the researchers record electrical signals from parietal lobe neurons while the subjects perform the categorization task. By measuring electrical activity patterns of these neurons, the researchers can decode the information conveyed by the neurons' activity.

"The activity patterns in these parietal neurons carry strong information about the category that each motion pattern gets assigned to during the task," Freedman said.

Over the years, his team's work on categorization has zeroed in on the lateral intraparietal (LIP) area. Studies have shown that this area is vital to directing spatial attention and eye movements. But it had been unclear how an area involved in spatial attention and eye movements could also play a role in non-spatial functions such as visual categorization.

To compare spatial and category functions in the parietal lobe, Freedman and his team added a twist to the monkeys' task. During the category task, the researchers required the subjects to make eye-movements to visual cues at various positions on the computer screen, but the subjects still had to categorize the visual patterns at the same time that they made these eye movements.

Since this parietal brain area is known to be involved in eye movements, the eye movements could have disrupted category information in that part of the brain. Instead, parietal brain cells showed a simultaneous and independent encoding of both eye-movement and category information—multiplexing of information at the level of single brain cells.

"These signals rode right on top of the eye-movement signals," said the study's first author, Chris Rishel, PhD, a recent graduate from Freedman's laboratory. "We could decode both the eye-movement and the category signals with high accuracy. This tells us that different kinds of information that are usually considered quite unrelated were simultaneously and independently represented by neurons in this particular brain area."

Their results, the study authors note, "support the possibility that LIP plays a key role in transforming visual signals in earlier sensory areas into abstract category signals during category-based decision-making tasks."

What does the brain gain from this territorial arrangement?

"There has long been a tendency to look at the many distinct anatomical areas of the cerebral cortex of the brain and to assume that each area is like a specialized module that plays a very specific function." Freedman said. "Our results support the growing sense that most, if not all, of these brain areas have multiple overlapping roles."

A brain that includes such overlapping functional centers may be more efficient, Freedman suggests. "It makes mapping these regions more complicated for scientists like us, but it may boost the brain's capacity. If each area can do a number of different things, you can squeeze a lot more function into the same space."

A next step is to understand how neuronal category representations develop in LIP neurons during the learning process, the authors said.

The paper, "Independent category and spatial encoding in parietal cortex," will be published online March 6 by the journal Neuron. The National Institutes of Health funded this study with additional support from the National Science Foundation, the McKnight Endowment Fund for Neuroscience, the Alfred P. Sloan Foundation and the Brain Research Foundation. Gang Huang, formerly a research technician in the lab, also contributed to the research.

John Easton | EurekAlert!
Further information:
http://www.uchospitals.edu

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>