Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Sloppier copier' surprisingly efficient

17.07.2009
Article in Nature solves 3 major puzzles about the workings of a famous enzyme involved in DNA repair

The "sloppier copier" discovered by USC biologists is also the best sixth man in the DNA repair game, an article in the journal Nature shows.

The enzyme known as DNA polymerase V (pol V) comes in when a cell's DNA is reeling from radiation damage or other serious blows. Pol V copies the damaged DNA as best it can – saving the life of the bacterial cell at the cost of adding hundreds of random mutations.

The July 16 Nature study reveals pol V's key attributes: economy of motion and quickness to engage.

The study also solves two other stubborn mysteries about the mechanics of DNA repair: the exact composition of the active form of pol V and the crucial role of a protein filament, known as RecA*, that is always present around DNA repair sites, but was never shown to be directly involved.

The three findings together describe an exquisitely efficient process.

"It's a beautiful mechanism for how cells conserve energy," said first author Qingfei Jiang, a graduate student of senior author Myron Goodman, professor of biological sciences and chemistry at USC College.

Cells multiply by division, which starts with the copying of DNA. Pol V kicks in when a section of damaged DNA baffles the enzymes normally involved in copying.

In experiments with E. coli, Jiang and Goodman showed that the activation signal for pol V is the transfer to the enzyme of two key molecules from RecA*.

RecA* is a nucleoprotein filament: a long line of proteins bound to single-stranded DNA. The molecules that RecA* transfers to pol V are ATP, the energy factory of the cell, and a single RecA* protein among the many that make up the filament.

The copying of damaged DNA is formally called "translesion synthesis," or TLS.

"What is RecA* doing?" had been a vexing question in the field for two decades, since the discovery that the filament was necessary for DNA repair. No one, however, could figure out why.

Goodman's group showed that the role of RecA* is limited but direct: It is needed to donate molecules to activate pol V, but it does not participate in damage-induced DNA copying and does not even need to be next to the repair site.

Instead, RecA* acts as a fuel station to put pol V to action.

With the two extra molecules attached, pol V copies the damaged DNA. As soon as it reaches the end of the damaged section, it falls off and immediately deactivates.

Pol V then waits to be called again.

In addition to saving energy, the process prevents the mistake-prone copier from trying to "repair" normal DNA.

"All the other DNA polymerases [enzymes], when they copy DNA, they go first from one and then to another DNA and copy it. Not this baby. It has to be reactivated," Goodman said.

"It's a utility player. It's the guy who does the tough jobs."

He added that the discovery "explains one of the key ways that you get mutations when you damage DNA."

Human cells use similar enzymes, Goodman said.

The study of mutations holds fundamental relevance for medicine, evolutionary biology, aging research and other fields.

Goodman's research group discovered pol V in 1999. The "sloppier copier" nickname, coined by USC science writer Eric Mankin, has since been adopted widely.

At the time, Goodman described pol V as a "last-ditch cell defense" that averts death at the cost of frequent copying mistakes, which show up as mutations in the cell's DNA.

Ironically, the sloppier copier may do more for the long-term success of the species than its accurate cousins. Some of the accidental mutations are likely to be helpful. Cells with those mutations will adapt better to their environment, and the mutations will spread through the species by natural selection.

Goodman and Jiang's co-authors were Kiyonobu Karata and Roger Woodgate of the National Institute of Child Health and Human Development, and Michael Cox of the University of Wisconsin-Madison.

The National Institutes of Health funded the research.

Carl Marziali | EurekAlert!
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>