Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Let's just harvest invasive species -- problem solved?

21.11.2013
Although invasive Asian carp have been successfully harvested and served on a dinner plate, harvesting invasive plants to convert into ethanol isn't as easy.

According to a recent study at the University of Illinois, harvesting invasive plants for use as biofuels may sound like a great idea, but the reality poses numerous obstacles and is too expensive to consider, at least with the current ethanol pathways.


This is Arundo donax, invading along the Santa Ana River in Riversie, Calif.

Credit: Lauren Quinn

"When the topic of potential invasion by non-native biofuel crops has been raised at conferences I've attended, the ecologists in the room have suggested we use biomass from existing invaders instead," said Lauren Quinn, an invasive plant ecologist in U of I's Energy Biosciences Institute.

"They worry about the potential deployment of tens of thousands of acres of known invaders like Arundo donax for ethanol production. They'd say, 'we have all of these invasive plants. Let's just harvest them instead of planting new ones!' But when I analyzed the idea from a broader perspective, it just didn't add up."

Quinn explored the idea of harvesting invasive plants from many angles but said that the overarching problem is the non-sustainability of the profit stream. "From a business person's perspective, it just doesn't function like a typical crop that is harvested and then replanted or harvested again the following year," she said. "Here, land managers are trying to get rid of an invasive plant using an array of methods, including herbicides, so there wouldn't necessarily be multiple years of harvest."

Other obstacles Quinn examined are the need for specially designed harvesting equipment, the development of new conversion technologies for these unique plants, and even the problems associated with transportation.

"One of the biggest issues is the absence of appropriate biorefineries in any given area," Quinn said. "If there isn't one nearby, growers would have to transport the material long distances, and that's expensive."

Perhaps more important, Quinn discussed the issues with the high variability of the cell wall composition across different species. "Most existing or planned biorefineries can process only a single, or at best, a small handful of conventional feedstocks, and are not likely to be flexible enough to handle the variety of material brought in from invasive plant control projects," Quinn said. "The breakdown and processing of plant tissues to ethanol requires different temperatures, enzymes, and equipment that are all highly specific. The proportion of cellulose, lignin, and other fractionation products can differ even within a single genotype if it is grown in multiple regions so the variations between completely different plant types would be an even greater hurdle."

Quinn isn't discounting the idea of harvesting invasive plants, however. She encourages control of invasive populations and subsequent ecological restoration but does not believe that invasive biomass can replace dedicated energy crops at present.

"One day there might be a pathway toward ethanol conversion of invasive biomass," Quinn said. "But until we do get to that point, there may be possibilities to use invasive plants as alternative sources of energy, like combustion for electricity. Invasive biomass could drop into the existing supply of biomass being co-fired with coal in the already huge network of electrical power plants across the country. That would eliminate the technological barriers that conversion to ethanol presents.

"I'm not saying that we shouldn't continue to look at ethanol conversion processes eventually, I'm just saying that right now, it doesn't seem to make a lot of economic sense."

"Why not harvest existing invaders for bioethanol?" was published in a recent issue of Biological Invasions. A. Bryan Endres and Thomas B. Voigt contributed. The research was funded by the Energy Biosciences Institute.

The Energy Biosciences Institute, funded by the energy company BP, is a research collaboration that includes the University of Illinois, the University of California at Berkeley, and Lawrence Berkeley National Laboratory. It is dedicated to applying the biological sciences to the challenges of producing sustainable, renewable energy for the world.

Debra Levey Larson | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Numbers count in the genetics of moles and melanomas
16.08.2019 | University of Queensland

nachricht Working out why plants get sick
16.08.2019 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

Im Focus: Study on attosecond timescale casts new light on electron dynamics in transition metals

An international team of scientists involving the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg has unraveled the light-induced electron-localization dynamics in transition metals at the attosecond timescale. The team investigated for the first time the many-body electron dynamics in transition metals before thermalization sets in. Their work has now appeared in Nature Physics.

The researchers from ETH Zurich (Switzerland), the MPSD (Germany), the Center for Computational Sciences of University of Tsukuba (Japan) and the Center for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Graphene nanoflakes: a new tool for precision medicine

19.08.2019 | Health and Medicine

Working out why plants get sick

16.08.2019 | Life Sciences

Newfound superconductor material could be the 'silicon of quantum computers'

16.08.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>