Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Pulverized' Chromosomes Linked to Cancer?

23.01.2012
They are the Robinson Crusoes of the intracellular world -- lone chromosomes, whole and hardy, stranded outside the nucleus where their fellow chromosomes reside. Such castaways, each confined to its own "micronucleus," are often found in cancer cells, but scientists haven't known what role, if any, they play in the cancer process.

In a paper published online on Jan. 18 by the journal Nature, Dana-Farber Cancer Institute researchers have mapped out a mechanism by which micronuclei could potentially disrupt the chromosomes within them and produce cancer-causing gene mutations. The findings may point to a vulnerability in cancer cells that could be attacked by new therapies.

"The most common genetic change in cancer is the presence of an incorrect number of intact chromosomes within cancer cells -- a condition known as aneuploidy," says Dana-Farber's David Pellman, MD, the study's senior author. "The significance of aneuploidy has been hard to pin down, however, because little is known about how it might trigger tumors. In contrast, the mechanism by which DNA damage and broken chromosomes cause cancer is well established -- by altering cancer genes in a way that spurs runaway cell division.

"The new study demonstrates one possible chain of events by which aneuploidy and specifically 'exiled' chromosomes could lead to cancer-causing mutations, with potential implications for cancer prevention and treatment," says Pellman, who is a Howard Hughes Medical Institute investigator and the Margaret M. Dyson Professor of Pediatric Oncology at Dana-Farber, Children's Hospital Boston and Harvard Medical School.

Whole chromosomes can end up outside the nucleus as a result of a glitch in cell division. In normal division, a cell duplicates its chromosomes and dispatches them to the newly forming daughter cells: the original set to one daughter, the twin set to the other. For a variety of reasons, the chromosomes sometimes aren't allocated evenly -- one daughter receives an extra one, the other is short one. Unlike the rest of the chromosomes, these stragglers sometimes don't make it to the nucleus. Instead, they're marooned elsewhere within the cell and become wrapped in their own membrane, forming a micronucleus.

"In some respects, micronuclei are similar to primary nuclei," Pellman remarks, "but much about their function and composition is unknown. Previous studies differ on whether micronuclei replicate or repair their chromosomes as normal nuclei do. The ultimate fate of these chromosomes is unclear as well: Are they passed on to daughter cells during cell division or are they somehow eliminated as division proceeds?"

One clue that odd-man-out chromosomes themselves may be subject to damage -- and therefore be involved in cancer -- emerged from Pellman's previous research into aneuploidy. "We found that cancer cells generated from cells with micronuclei also have a great deal of chromosome breakage," Pellman explains. But researchers didn't know if this was a sign of connection or of coincidence.

Another clue came from a recently discovered phenomenon called "chromothripsis," in which one chromosome of a cancer cell shows massive amounts of breakage and rearrangement, while the remainder of the genome is largely intact. "That finding leapt off the page of these studies -- that such extensive damage could be limited to a single chromosome or single arm of a chromosome," Pellman says. "We wondered if the physical isolation of chromosomes in micronuclei could explain this kind of highly localized chromosome damage."

To find out, Karen Crasta, PhD, of Pellman's lab and the study's lead author, used a confocal microscope to observe dividing cells with micronuclei. She found that while micronuclei do form duplicate copies of their chromosomes, the process is bungled in two respects. First, it is inefficient: part of the chromosome is replicated and part isn't, leading to chromosome damage. Second, it is out of sync: the micronucleus keeps trying to replicate its chromosomes long after replication of the other chromosomes was completed. For cell division to be successful, every step of the process must occur in the proper order, at the proper time. In fact, when study co-author Regina Dagher directly analyzed the structure of the late-replicating chromosomes, she found them to be smashed to bits -- exactly what was predicted as the first step in chromothripsis.

The final piece of the puzzle came when Pellman's colleague Neil Ganem, PhD, examined what happens to these pulverized fragments, using an imaging trick that marked the chromosome in the micronucleus with its own color.

"It has been theorized that micronuclei are garbage disposals for chromosomes that the cell doesn't need anymore," Pellman comments. "If that were true, the smashed pieces would be discarded or digested, but we found that, a third of the time, they're donated to one of the daughter cells and therefore cold be incorporated into that cell's genome.

Pellman says that the findings suggest that, unexpectedly, whole chromosome aneuploidy might promote cancer in a very similar way to other kinds of genomic alterations. The key event may be mutations in oncogenes and tumor suppressors. This mechanism may also explain how cancer cells acquire more than one such mutation at a time.

"Although chromothripsis occurs in only a few percent of human cancers, our findings suggest that it might be an extreme instance of a kind of chromosome damage that could be much more common," says Pellman, who adds that accelerating this process in cancer cells, thus generating so many mutations that the cells die, may represent a possible strategy for new therapies against certain tumors.

The research was supported by the National Institutes of Health, the Howard Hughes Medical Institute, and the Leukemia and Lymphoma Society.

Dana-Farber Cancer Institute (www.dana-farber.org) is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute. It provides adult cancer care with Brigham and Women's Hospital as Dana-Farber/Brigham and Women's Cancer Center and it provides pediatric care with Children's Hospital Boston as Dana-Farber/Children's Hospital Cancer Center. Dana-Farber is the top ranked cancer center in New England, according to U.S. News & World Report, and one of the largest recipients among independent hospitals of National Cancer Institute and National Institutes of Health grant funding. Follow Dana-Farber on Twitter: @danafarber and Facebook: www.facebook.com/danafarbercancerinstitute

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu

More articles from Life Sciences:

nachricht Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles
19.10.2018 | University of Vienna

nachricht Less animal experiments on the horizon: Multi-organ chip awarded
19.10.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>