Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Museomics' yields new insights into extinct Tasmanian tiger

13.01.2009
In 1902, the National Zoo in Washington D.C. arranged to have a unique and endangered animal called the thylacine, or Tasmanian Tiger, brought to the United States from Tasmania.

Later that year, a female and her three cubs arrived at the zoo. However, by the mid-1930s, the thylacine was extinct, leaving behind only preserved museum specimens.

In a study published online today in Genome Research (www.genome.org), researchers have used state-of-the-art DNA sequencing technology to analyze preserved thylacines, including one of those brought to the National Zoo more than 100 years ago, making novel discoveries in thylacine genomics and the burgeoning field of "museomics."

The thylacine was actually not a tiger at all, rather a marsupial with many dog-like features—a striking example of convergent evolution in mammals. Extensively hunted by farmers, the thylacine was becoming increasingly rare in the wild at the time the National Zoo acquired the female and cubs, and was declared extinct in 1936 upon the death of the last captive animal. Genetic sequences sampled from the preserved specimens of the National Zoo thyalcine family have been studied in recent years, however these investigations were severely limited by DNA contamination and degradation.

Now, in a strategy nicknamed "museomics," researchers are using improved methods for sampling DNA combined with the latest sequencing technology to analyze preserved museum samples. In this study, an international team of scientists has sequenced mitochondrial and nuclear DNA from the hair of the male thylacine offspring brought to the National Zoo in 1902 and a female that died in the London Zoo in 1893. In addition to refining the place of this unusual animal in evolutionary history, genetic clues to the impending extinction of the thylacine became apparent.

"What I find amazing is that the two specimens are so similar," said Dr. Anders Götherström of Uppsala University in Sweden. "There is very little genetic variation between them." Götherström, a co-author of the study, explained that a lack of genetic diversity is indicative of a species on the brink of extinction, and we are now observing this more than 70 years later.

In addition to using the mitochondrial genome sequence to study the phylogeny of the thylacine, the authors also investigated the collection of genetic material of microbial and viral origin (the "metagenome") present on the museum samples. Interestingly, the research team found distinct differences in the microbial content of the hair of the wild-born thylacine from the London Zoo and the captive-born thylacine from the National Zoo. Furthermore, the authors noted that the specimens were preserved by differing methods. "Analyzing the microbial content of museum specimens will therefore allow us to gain insight into the microbial flora that lives on the exhibit samples and help to develop means to further protect them," said Dr. Stephan Schuster of Penn State University, also an author of the report.

This work has established the groundwork for more detailed genetic analysis of the thylacine, opened the door to more museomic studies using the treasure trove of museum specimens worldwide, and will raise dialogue about even bigger projects. "The large amount of mitochondrial and nuclear DNA gained in our study demonstrates the feasibility of a thylacine genome project," explained Schuster. "It will also revive discussions on the possible resurrection of the animal."

Peggy Calicchia | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Tiny Helpers that Clean Cells
14.08.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Light-controlled molecules: Scientists develop new recycling strategy
14.08.2018 | Humboldt-Universität zu Berlin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

Im Focus: A molecular switch may serve as new target point for cancer and diabetes therapies

If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

Cell growth and cell differentiation as well as the release and efficacy of hormones such as insulin depend on the presence of lipids. Lipids are small...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Can radar replace stethoscopes?

14.08.2018 | Medical Engineering

The end-Cretaceous extinction unleashed modern shark diversity

14.08.2018 | Life Sciences

Light-controlled molecules: Scientists develop new recycling strategy

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>