'More Cavalier' plants could counter effects of climate change

'To develop varieties of crops that can produce high yield sustainably under changing climatic conditions we need to be able to override plants' natural tendency to batten down the hatches really hard when times are tough, and to hedge their bets when times are good,' said Professor Ottoline Leyser of the University of York.

Professor Leyser was speaking at a recent meeting of the Strategy Advisory Board* of the Biotechnology and Biological Sciences Research Council – the major public funder of plant science research in the UK.

She told the meeting that plants are naturally conservative. Evolution has driven them to plan for the long term and adopt a cautious rate of growth in case things get really bad in the future. While this makes sense in the wild, said Professor Leyser, for crop plants we want varieties that will behave in a more 'cavalier fashion' and maintain a faster rate of growth in a range of environments, investing that growth specifically in plant parts of agricultural relevance.

Although 10,000 years of plant breeding has made significant inroads in modifying plant growth properties, sophisticated new information about plant genes and their functions provides exciting opportunities for plant breeders to tap into the unused potential of plants to maintain productivity, even in harsh conditions.

There is a tendency to assume that plants are growing as fast as they can given the resources available to them, but multiple lines of evidence now show that this is not the case. Plants have specific genes that limit growth, and quite simple changes in those genes can increase productivity. The trick, however, is to breed plants with more sophisticated combinations of these genes that will still respond to the environment, protecting themselves from harsh conditions, but in a more light-touch way. To do that, we need to understand how these genes work together as a system to regulate growth.

Professor Leyser said that one of the big challenges is to channel this information rapidly into large scale plant breeding.

* The Board advises BBSRC Council on its strategic priorities and planning, and brings together academic and industry based researchers.

Media Contact

Press Office alfa

More Information:

http://www.bbsrc.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors