Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford researchers create a wireless, battery-free, biodegradable blood flow sensor

09.01.2019

A new device developed by Stanford University researchers could make it easier for doctors to monitor the success of blood vessel surgery. The sensor, detailed in a paper published Jan. 8 in Nature Biomedical Engineering, monitors the flow of blood through an artery. It is biodegradable, battery-free and wireless, so it is compact and doesn't need to be removed and it can warn a patient's doctor if there is a blockage.

"Measurement of blood flow is critical in many medical specialties, so a wireless biodegradable sensor could impact multiple fields including vascular, transplant, reconstructive and cardiac surgery," said Paige Fox, assistant professor of surgery and co-senior author of the paper.


Artist's depiction of the biodegradable pressure sensor wrapped around a blood vessel with the antenna off to the side (layers separated toshow details ofthe antenna'sstructure).

Credit: Levent Beker

"As we attempt to care for patients throughout the Bay Area, Central Valley, California and beyond, this is a technology that will allow us to extend our care without requiring face-to-face visits or tests."

Monitoring the success of surgery on blood vessels is challenging as the first sign of trouble often comes too late. By that time, the patient often needs additional surgery that carries risks similar to the original procedure.

This new sensor could let doctors keep tabs on a healing vessel from afar, creating opportunities for earlier interventions.

Flow or no

The sensor wraps snugly around the healing vessel, where blood pulsing past pushes on its inner surface. As the shape of that surface changes, it alters the sensor's capacity to store electric charge, which doctors can detect remotely from a device located near the skin but outside the body.

That device solicits a reading by pinging the antenna of the sensor, similar to an ID card scanner. In the future, this device could come in the form of a stick-on patch or be integrated into other technology, like a wearable device or smartphone.

The researchers first tested the sensor in an artificial setting where they pumped air through an artery-sized tube to mimic pulsing blood flow. Surgeon Yukitoshi Kaizawa, a former postdoctoral scholar at Stanford and co-author of the paper, also implanted the sensor around an artery in a rat.

Even at such a small scale, the sensor successfully reported blood flow to the wireless reader. At this point, they were only interested in detecting complete blockages, but they did see indications that future versions of this sensor could identify finer fluctuations of blood flow.

The sensor is a wireless version of technology that chemical engineer Zhenan Bao has been developing in order to give prostheses a delicate sense of touch.

"This one has a history," said Bao, the K. K. Lee Professor in the School of Engineering and co-senior author of the paper. "We were always interested in how we can utilize these kinds of sensors in medical applications but it took a while to find the right fit."

The researchers had to modify their existing sensor's materials to make it sensitive to pulsing blood but rigid enough to hold its shape.

They also had to move the antenna to a location where it would be secure, not affected by the pulsation, and re-design the capacitor so it could be placed around an artery.

"It was a very exacting project and required many rounds of experiments and redesign," said Levent Beker, co-lead author of the paper and a postdoctoral scholar in the Bao lab. "I've always been interested in medical and implant applications and this could open up a lot of opportunities for monitoring or telemedicine for many surgical operations."

Making connections

The idea of an artery sensor began to take shape when former postdoctoral fellow Clementine Boutry of the Bao lab reached out to Anaïs Legrand, who was a postdoctoral fellow in the Fox lab, and connected those groups - along with the lab of James Chang, the Johnson and Johnson Professor of Surgery.

Once they set their sights on the biodegradable blood flow monitor, the collaboration won a 2017 Postdocs at the Interface seed grant from Stanford ChEM-H, which supports postdoctoral research collaborations exploring potentially transformative new ideas.

"We both value our postdoctoral researchers but did not anticipate the true value this meeting would have for a long-term productive partnership," said Fox.

The researchers are now finding the best way to affix the sensors to the vessels and refining their sensitivity. They are also looking forward to what other ideas will come as interest grows in this interdisciplinary area.

"Using sensors to allow a patient to discover problems early on is becoming a trend for precision health," Bao said. "It will require people from engineering, from medical school and data people to really work together, and the problems they can address are very exciting."

###

To read all stories about Stanford science, subscribe to the biweekly Stanford Science Digest.

Additional Stanford co-authors include Clementine Boutry (co-lead), Christopher Vassos, Helen Tran, Allison C. Hinckley, Raphael Pfattner, Simiao Niu, Junheng Li, Jean Claverie, Zhen Wang and Yukitoshi Kaizawa. Bao is also a member of Stanford Bio-X, a senior fellow at the Precourt Institute for Energy, a fellow at Stanford ChEM-H, an affiliate of the Stanford Woods Institute for the Environment and a member of the Wu Tsai Neurosciences Institute. Chang is also a member of Stanford Bio-X. Fox is also a fellow at Stanford ChEM-H.

This work was funded by the Swiss National Science Foundation, the European Commission, Stanford ChEM-H and the National Science Foundation.

Media Contact

Taylor Kubota
tkubota@stanford.edu
650-724-7707

 @stanford

http://news.stanford.edu/

Taylor Kubota | EurekAlert!
Further information:
https://news.stanford.edu/press/view/25502
http://dx.doi.org/10.1038/s41551-018-0336-5

More articles from Interdisciplinary Research:

nachricht Description of rotating molecules made easy
21.12.2018 | Institute of Science and Technology Austria

nachricht Decoding the regulation of cell survival - A major step towards preventing neurons from dying
04.10.2018 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Programming light on a chip

Research opens doors in photonic quantum information processing, optical signal processing and microwave photonics

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new integrated photonics platform that can...

Im Focus: Physicists uncover new competing state of matter in superconducting material

A team of experimentalists at the U.S. Department of Energy's Ames Laboratory and theoreticians at University of Alabama Birmingham discovered a remarkably long-lived new state of matter in an iron pnictide superconductor, which reveals a laser-induced formation of collective behaviors that compete with superconductivity.

"Superconductivity is a strange state of matter, in which the pairing of electrons makes them move faster," said Jigang Wang, Ames Laboratory physicist and...

Im Focus: Tumors backfire on chemotherapy

Some patients with breast cancer receive chemotherapy before the tumor is removed with surgery. This approach, called 'neoadjuvant' therapy, helps to reduce the size of the tumor to facilitate breast-conserving surgery, and can even eradicate the tumor, leaving few or no cancerous cells for the surgeon to remove. In those cases, the patients are very likely to remain cancer-free for life after surgery.

But not all tumors shrink under chemotherapy. If the tumor resists neoadjuvant therapy, there can be a higher risk of developing metastatic disease, meaning...

Im Focus: One of the world's fastest cameras films motion of electrons

Kiel research team examines ultrafast conversion of light energy in a solid

During the conversion of light into electricity, such as in solar cells, a large part of the input light energy is lost. This is due to the behaviour of...

Im Focus: First detection of rain over the ocean by navigation satellites

In order to analyse climate change or provide information about natural hazards, it is important to gather knowledge about the rain. Better knowledge of precipitation and its distribution could, for example, help protect against river flooding. A new approach uses, for the first time, information contained in radar signals from navigation satellites to detect rain over the sea. The technology could help to monitor atmospheric precipitation better than before.

In order to analyse climate change or provide information on natural hazards, for example, it is important for researchers to gather knowledge about rain.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

How herpesviruses shape the immune system

09.01.2019 | Health and Medicine

Stanford researchers create a wireless, battery-free, biodegradable blood flow sensor

09.01.2019 | Interdisciplinary Research

Research explains public resistance to vaccination

09.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>