Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

`Glowing bacteria` help meat treatment project

16.04.2002


A project to develop effective techniques for the ‘surface pasteurisation’ of food led by the University of Bristol is being helped by a new technique developed by scientists at the University of the West of England. Officially titled ‘BUGDEATH’ the project, which in total has eight partners, is aimed at ‘Predicting microbial death during heat treatments on foods’.

Researchers based at the University of Bristol Food Refrigeration and Process Engineering Centre, have been looking at ‘steam pasteurisation’ for some time – a process whereby steam is blown at the surface of the food (for example meat) at a high temperature for a short time to kill any bacteria before it is stored or processed.

The BUGDEATH project will focus on what happens to the bacteria which are treated in this way and with other ‘dry’ treatments. It will assess how the speed of the surface temperature change affects the bacteria. The project will look at how the bacteria die and how long this takes. The researchers will use real food rather than just samples in test tubes so that the data they produce has real relevance for the food industry.



Testing the effectiveness of the various techniques using traditional methods can take up to 24 hours to produce results. Now scientists at UWE have come up with a more efficient method of measuring the effectiveness of the steaming and other techniques.

Using organisms which have been treated by adding lux genes to make them glow (bioluminescence), and applying them to the food surface to be treated, the scientists can quickly measure changes taking place in the bacteria. If the bioluminescence fades when the food is treated then the process is effective. The bacteria glow brightly when healthy, fade when expiring and stop glowing the moment they die.

The data gained from these tests will be used to produce mathematical models, enabling a wide range of food manufacturers to design more effective and efficient treatments for foods.

Dr Vyv Salisbury, a senior microbiologist from UWE who is working on the project, says, “Finding ways to make our food safer is important for food manufacturers and consumers as well as for scientists. The use of the LUX genes in this project provides a useful comparison with traditional testing methods and can give rapid results to the researchers.”

Lux genes have been used for several years by scientists and researchers. They are the genes which give creatures such as fireflies, glow worms and marine bacteria the ability to ‘light up’.

Scientists at UWE have also used the lux genes in research to test the effectiveness of antibiotics.

The current project, which is EEC funded, is coordinated by the University of Bristol with 7 partners including UWE.

Jane Kelly | alphagalileo

More articles from Interdisciplinary Research:

nachricht How do muscle and tendon connections last a lifetime? Study in the fruit fly Drosophila
04.04.2019 | Westfälische Wilhelms-Universität Münster

nachricht The Internet of Things: TU Graz researchers increase the dependability of smart systems
18.02.2019 | Technische Universität Graz

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>