Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heritage at risk from climate change

28.06.2004


A ‘Noah’s Ark’ of historic buildings and monuments at risk from climate change is launched this month.



The three-year project brings together experts from 10 European countries including the UK, Italy, Sweden, Poland, the Czech Republic, Spain and Norway to investigate the effects of climate change and pollution on Europe’s historic built environment over the next 100 years. Representing the UK are the University of East Anglia, University College London and the Ecclesiastical Insurance Group.

Hadrian’s Wall, Trafalgar Square, the Charles Bridge in Prague, Cologne Cathedral and the Temples of Agrigento in Sicily are among the structures considered to be under threat.


Professor Peter Brimblecombe of the University of East Anglia said factors including wind-driven rain and sand, freeze-thaw cycles and radiation from the sun may start to impact on historic buildings in unpredictable ways.

"Changes in the composition of the atmosphere, for example more ozone, will impact on the fundamental chemical processes causing damage to building materials," said Prof Brimblecombe.

"An increase in wind speed may cause sea-salts to travel further inland and furthermore increase the impact of driving rain on buildings."

Launched earlier this month in Bologna, Italy, the Noah’s Ark project will be the first in Europe to deal with the effects of environmental change on cultural heritage and should protect historic sites from the apocalyptic scenarios presented in the Hollywood film ’The Day after Tomorrow’.

Like the Biblical ark, the project will draw together a mass of environmental data and map the future of Europe’s monumental heritage. In the past scientists and heritage experts have been predominantly concerned with deterioration caused by pollutants and acid rain, but more recently the focus has shifted to new climatic influences that may affect buildings in the longer term. For example, an increase in sun radiation may accelerate the deterioration of paint or other coatings used on buildings. Certain pressures may decrease slightly, too. There will be fewer freeze-thaw cycles in the future, so frost damage to building stones may be reduced.

The team of researchers will use a number of test sites to assess the risk from climate change, such as Prague which is affected from very cold winters combined with very hot summers and Venice which is at risk from both sea level rise and flooding.

The project will culminate in the drafting of a Vulnerability Atlas indicating the areas at greatest risk and showing how specific buildings are likely to react to future climatic conditions. Guidelines will also be published to help all those involved in cultural heritage management draft strategies for the future.

Noah’s Ark has 1,200,000 Euros of European Commission funding and is being coordinated by the Institute for Sciences of the Atmosphere and Climate (ISAC) at the National Research Council in Bologna, Italy.

Dr Cristina Sabbioni of ISAC warned climate change would bring irreparable damage in its wake, especially to archaeological and historical works exposed to the open air.

"Sandstorms caused by desertification could lead to the erosion of stones used to build the ancient temples and historic palaces of southern Italy, while increased and severe flooding in northern Europe could create a hazard to structures built in wood or containing clay binders, materials that deteriorate on contact with water,” she said.

"The topic of Cultural Heritage has never been considered as an indicator in reports and legislation on pollution and climate change, unlike other issues such as ecosystems, human health and agriculture."

Mary Pallister | alfa
Further information:
http://www.uea.ac.uk

More articles from Interdisciplinary Research:

nachricht The Internet of Things: TU Graz researchers increase the dependability of smart systems
18.02.2019 | Technische Universität Graz

nachricht Stanford researchers create a wireless, battery-free, biodegradable blood flow sensor
09.01.2019 | Stanford University

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>