Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weizmann institute scientists solve the 3-D structure of the enzyme involved in Gaucher disease

02.06.2003


Glucocerebrosidase


Discovery may help design effective therapies for the genetic disease that mainly affects Ashkenazi Jews

An interdisciplinary team of Weizmann Institute scientists has solved the three-dimensional structure of an enzyme called glucocerebrosidase. Mutations occurring in this enzyme cause Gaucher disease, a genetic illness that mainly affects Ashkenazi Jews. The Institute study, published recently in EMBO Reports, may lead to the design of effective new therapies for treating the disease.

Gaucher disease was first described in 1882 by the French physician Philippe Gaucher. It is characterized by swelling and enlargement of the spleen and liver and disruption in the function of these organs, and in rare cases it also affects the brain. In the 1920s, the disease was found to be caused by the excessive accumulation of a fatty substance, or lipid, called glucosylceramide. In the 1960s, researchers discovered that the accumulation occurs due to a defect in the glucocerebrosidase enzyme, whose function is to break down this lipid and regulate its amount. In the 1980s, the gene responsible for manufacturing the enzyme was isolated; scientists found that mutations in this gene disrupt the function of the enzyme, leading to the development of Gaucher disease.



By the early 1990s, the U.S. company Genzyme started producing the enzyme – first from placenta, then by genetic engineering. Today thousands of Gaucher patients are treated by injections of the enzyme, an approach called enzyme replacement therapy, or ERT. The annual cost of the therapy per patient is approximately $100,000 to $300,000. Obviously, more affordable alternatives, such as the ones that may emerge from the Weizmann Institute study, are urgently needed.

The Institute team included Prof. Tony Futerman of the Biological Chemistry Department, Prof. Joel Sussman of the Structural Biology Department and Prof. Israel Silman of the Neurobiology Department, as well as Dr. Michal Harel, Lilly Toker and graduate student Hay Dvir.

The first step in solving the three-dimensional structure of an enzyme is to grow its crystals. In the case of the glucocerebrosidase enzyme involved in Gaucher disease, the crystallization was a formidable challenge. The Weizmann Institute scientists succeeded in this task by cutting parts of certain sugar molecules on the surface of the enzyme.

The scientists then resorted to X-ray crystallography, a method in which the crystal is exposed to X-rays and the structure of its molecules is determined by the diffraction pattern of the X-rays. The X-ray data were collected at the European Synchrotron Radiation Facility in Grenoble, France.

The solution of the enzyme structure may lead to the development of new therapies for Gaucher disease. First, the structural information may help design a more effective enzyme that will improve today’s ERT therapy. This approach is most likely to provide effective additional treatments for Gaucher disease, until the development of gene therapy for this disorder is developed. Another type of therapy likely to emerge from the Weizmann findings is the design of small molecules that will supplement the damaged enzyme in the patient’s body, thereby restoring its normal functioning.

Yeda Research and Development Co., which is responsible for the commercialization of Weizmann Institute research, has filed a patent application for the medical applications of these findings.

Prof. Futerman’s research is supported by The Estate of Ernst and Anni Deutsch-Promotor Stiftung, Switzerland, Paul Godfrey Foundation, and Buddy Taub Foundation. Prof. Futerman is the incumbent of the Joseph Meyerhoff Professorial Chair of Biochemistry.

Prof. Sussman’s research is supported by the Charles A. Dana Foundation, Jean and Jula Goldwurm Memorial Foundation, Helen & Milton A. Kimmelman Center for Biomolecular Structure & Assembly, Joseph and Ceil Mazer Center for Structural Biology, and The late Sally Schnitzer. Prof. Joel Sussman is the incumbent of the Morton and Gladys Pickman Chair in Structural Biology.

Prof. Israel Silman’s research is supported by Nella and Leon Benoziyo Center for Neurosciences, Charles A. Dana Foundation, Carl and Micaela Einhorn-Dominic Brain Research Institute, Helen & Milton A. Kimmelman Center for Biomolecular Structure & Assembly. Prof. Silman is the incumbent of the Bernstein-Mason Professorial Chair of Neurochemistry.


The Weizmann Institute of Science in Rehovot, Israel, is one of the world’s top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,500 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Alex Smith | EurekAlert!
Further information:
http://www.weizmann.ac.il/

More articles from Interdisciplinary Research:

nachricht Investigating cell membranes: researchers develop a substance mimicking a vital membrane component
25.05.2018 | Westfälische Wilhelms-Universität Münster

nachricht New approach: Researchers succeed in directly labelling and detecting an important RNA modification
30.04.2018 | Westfälische Wilhelms-Universität Münster

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>