Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Autonomous energy-scavenging micro devices will test water quality, monitor bridges, more

14.06.2013
Out in the wilds or anywhere off the grid, sophisticated instruments small enough to fit in a shirt pocket will one day scavenge power from sunlight, body heat, or other sources to monitor water quality or bridge safety, enabling analysis in the field rather than bringing samples and data back to the lab.
Researchers at the University of Waterloo in Ontario are using optics and photonics in their quest to "bring the lab to the sample," said lead researcher Vassili Karanassios of the Department of Chemistry and of the university's Institute for Nanotechnology (WIN) A major aspect of his team's solution, reported in a conference and publication by SPIE, the international society for optics and photonics, is scavenging energy from various sources to power instruments at the sample site.

While energy harvesting utilizes sources such as wind power, energy scavenging involves re-using discarded energy, such as the electric light that runs a calculator, Karanassios said.

The team is incorporating wake-up systems in the devices to support energy autonomy, the ability to be powered as needed without an external source, without losing selectivity, the ability to gather and accurately analyze relevant data.

An important feature of his lab's approach is the integration of several features of full-scale laboratory instruments.

"People have experimented with sensors and with lab-on-a-chip devices for a long time," Karanassios said. "But taking an entire instrument to the field in a hand-held device is new. Not many research groups have the expertise to integrate it all, to go from the sensor level to the micro-instrument level."

The team is also working to reduce the power required for miniature instruments that perform optical emission spectrometry -- using light to generate the spectral patterns that are intrinsically unique to materials -- with very small samples. The resulting spectral "signature" is used to identify what is in the sample, for example, in on-site monitoring of water quality.

Among power source optics, sunlight is one obvious answer, Karanassios said, but limited by clouds and brief daylight in some regions. Additional possible sources and applications for energy scavenging are:
Plugging in to human body heat, unobtrusively scavenging energy in the form of otherwise-wasted heat generated by a person while walking, to power instruments for testing water quality or wearable biomedical monitors.
Harnessing animal body heat, to recharge implanted tracking devices. "When tagging and tracking animals in the wild, you do not want to have to catch the same animal one more time just to replace the battery that powers its sensors," Karanassios noted.
Charging up a bridge sensor using mechanical energy generated in a spring-loaded device in the road, activated by vehicles crossing the bridge.

Because smaller sensors and instruments require less power, Karanassios' lab is working toward "shirt-pocket size" micro-instruments that eventually will deliver performance comparable to full-size lab versions.
They have experimented with a device the size of sugar cube that can be used along with a portable spectrometer for rapid screening of environmental contaminants, using spectral lines generated by wavelengths in the visible light and ultraviolet regions.

A paper detailing the work by Karanassios and Waterloo colleagues Donghyun Lee and Gurjit Dulai was published 28 May in the SPIE Digital Library, and presented in a conference on Energy Harvesting and Storage at SPIE Defense, Security, and Sensing (DSS) last month in Baltimore. Titled "Survey of energy harvesting and energy scavenging approaches for on-site powering of wireless sensor- and microinstrument-networks," the paper is available via open access through 31 August 2013.

Karanassios also described the work in a video interview with the SPIE Newsroom, viewable at http://spie.org/x94092.xml (5:58).

SPIE is the international society for optics and photonics, a not-for-profit organization founded in 1955 to advance light-based technologies. The Society serves nearly 235,000 constituents from approximately 155 countries, offering conferences, continuing education, books, journals, and a digital library in support of interdisciplinary information exchange, professional networking, and patent precedent. SPIE provided over $3.2 million in support of education and outreach programs in 2012.

Media contact:
Amy Nelson
Public Relations Manager, SPIE
+1 360 685 5478
amy@spie.org
@SPIEtweets

Amy Nelson | EurekAlert!
Further information:
http://www.sie.org

More articles from Interdisciplinary Research:

nachricht Investigating cell membranes: researchers develop a substance mimicking a vital membrane component
25.05.2018 | Westfälische Wilhelms-Universität Münster

nachricht New approach: Researchers succeed in directly labelling and detecting an important RNA modification
30.04.2018 | Westfälische Wilhelms-Universität Münster

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Behavior-influencing policies are critical for mass market success of low carbon vehicles

17.07.2018 | Power and Electrical Engineering

Plant mothers talk to their embryos via the hormone auxin

17.07.2018 | Life Sciences

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>