Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s smallest spirals could guard against identity theft

03.06.2015

Take gold spirals about the size of a dime...and shrink them down about six million times. The result is the world’s smallest continuous spirals: “nano-spirals” with unique optical properties that would be almost impossible to counterfeit if they were added to identity cards, currency and other important objects.

Students and faculty at Vanderbilt University fabricated these tiny Archimedes’ spirals and then used ultrafast lasers at Vanderbilt and the Pacific Northwest National Laboratory in Richland, Washington to characterize their optical properties. The results are reported in a paper published online by the Journal of Nanophotonics on May 21.


Scanning electron microscope image of an individual nano-spiral. (Haglund Lab / Vanderbilt)


Computer simulation of the harmonic emissions produced by a nano-spiral when it is being illuminated by infrared light. (Haglund Lab / Vanderbilt)

“They are certainly smaller than any of the spirals we’ve found reported in the scientific literature,” said Roderick Davidson II, the Vanderbilt doctoral student who figured out how to study their optical behavior. The spirals were designed and made at Vanderbilt by another doctoral student, Jed Ziegler, now at the Naval Research Laboratory.

Most other investigators who have studied the remarkable properties of microscopic spirals have done so by arranging discrete nanoparticles in a spiral pattern: similar to spirals drawn with a series of dots of ink on a piece of paper. By contrast, the new nano-spirals have solid arms and are much smaller: A square array with 100 nano-spirals on a side is less than a hundredth of a millimeter wide.

When these spirals are shrunk to sizes smaller than the wavelength of visible light, they develop unusual optical properties. For example, when they are illuminated with infrared laser light, they emit visible blue light. A number of crystals produce this effect, called frequency doubling or harmonic generation, to various degrees. The strongest frequency doubler previously known is the synthetic crystal beta barium borate, but the nano-spirals produce four times more blue light per unit volume.

When infrared laser light strikes the tiny spirals, it is absorbed by electrons in the gold arms. The arms are so thin that the electrons are forced to move along the spiral. Electrons that are driven toward the center absorb enough energy so that some of them emit blue light at double the frequency of the incoming infrared light.

“This is similar to what happens with a violin string when it is bowed vigorously,” said Stevenson Professor of Physics Richard Haglund, who directed the research. “If you bow a violin string very lightly it produces a single tone. But, if you bow it vigorously, it also begins producing higher harmonics, or overtones. The electrons at the center of the spirals are driven pretty vigorously by the laser’s electric field. The blue light is exactly an octave higher than the infrared – the second harmonic.”

The nano-spirals also have a distinctive response to polarized laser light. Linearly polarized light, like that produced by a Polaroid filter, vibrates in a single plane. When struck by such a light beam, the amount of blue light the nano-spirals emit varies as the angle of the plane of polarization is rotated through 360 degrees.

The effect is even more dramatic when circularly polarized laser light is used. In circularly polarized light, the polarization plane rotates either clockwise or counterclockwise. When left-handed nano-spirals are illuminated with clockwise polarized light, the amount of blue light produced is maximized because the polarization pushes the electrons toward the center of the spiral. Counterclockwise polarized light, on the other hand, produces a minimal amount of blue light because the polarization tends to push the electrons outward so that the waves from all around the nano-spiral interfere destructively.

The combination of the unique characteristics of their frequency doubling and response to polarized light provide the nano-spirals with a unique, customizable signature that would be extremely difficult to counterfeit, the researchers said.

So far, Davidson has experimented with small arrays of gold nano-spirals on a glass substrate made using scanning electron-beam lithography. Silver and platinum nano-spirals could be made in the same way. Because of the tiny quantities of metal actually used, they can be made inexpensively out of precious metals, which resist chemical degradation. They can also be made on plastic, paper and a number of other substrates.

“If nano-spirals were embedded in a credit card or identification card, they could be detected by a device comparable to a barcode reader,” said Haglund.

The frequency doubling effect is strong enough so that arrays that are too small to see with the naked eye can be detected easily. That means they could be placed in a secret location on a card, which would provide an additional barrier to counterfeiters.

The researchers also argue that coded nano-spiral arrays could be encapsulated and placed in explosives, chemicals and drugs – any substance that someone wants to track closely – and then detected using an optical readout device.

Additional contributors to the study include graduate student Guillermo Vargas and Research Assistant Professor Sergey Avanesyan from Vanderbilt and scientific staff members Yu Gong and Wayne Hess at the Pacific Northwest National Laboratory.

The research was supported by Department of Energy Office of Science grant DE-FG02-01ER45917 and National Science Foundation grants HP-1058571 and ARI-R2 DMR-0963361.


Visit Research News @ Vanderbilt for more research news from Vanderbilt.

David F. Salisbury | Vanderbilt University
Further information:
http://www.vanderbilt.edu
http://news.vanderbilt.edu/2015/06/worlds-smallest-spirals-could-guard-against-identity-theft/

More articles from Information Technology:

nachricht Reversing cause and effect is no trouble for quantum computers
20.07.2018 | Centre for Quantum Technologies at the National University of Singapore

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>