Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Underwater acoustic localization of marine mammals and vehicles

23.11.2017

Researchers at IMDEA Networks (Spain) in collaboration with University of Haifa (Israel) have developed an underwater acoustic system for the localization of marine mammals, underwater vehicles and other sound sources in the ocean, using no more than a single hydrophone (basically an underwater microphone) as a receiver.

Understanding the oceans, which cover two thirds of the Earth's surface and contain information about climate, the history of our planet and yet-to-be-explored energy resources and forms of life, is essential to the future of our planet. Acoustic wireless information transmission through the oceans is one of the technologies enabling the development of future ocean-observation systems, a stepping stone towards gaining a better perception of so many pivotal issues the oceans seem to hold the key to.


Acquiring experimental data from an underwater acoustic communication system on a boat off the coast of Northern Israel. The depicted buoy belongs to the project THEMO.

Credit: @IMDEA Networks Institute

Usage Restrictions: Image may only be used with appropriate caption or credit.

This new collaborative research effort has focused on one aspect of information transmission underwater: a simpler, more efficient and less costly system for the localization of sound sources found in the oceans. Nowadays the cost of covering a broad area of the ocean with multiple receivers to locate marine mammals or underwater vehicles based on the acoustic signals they produce is excessively high. Thus, this international team of researchers has set itself the objective of resolving the problem of how to estimate the trajectory of a submerged source that emits acoustic signals without using any anchor nodes or a receiving array.

As conventional localization algorithms such as those used in GPS-like systems cannot be directly ported to an underwater scenario, in this innovative system the localization is performed thanks to the incorporation of additional information about the environment surrounding the receiving hydrophone.

In particular, the system relies on information about the variation of submarine topography, of the depths and shapes of underwater terrain, known in technical terms as "bathymetry". These variations that are registered along different directions from the receiver induce changes in signal propagation, and these changes are then modeled and used to discriminate the location of the source of the signal. The result, after the calculations have been cleared of residual "noise", offers a close estimate of the trajectory of the source of sound under examination.

The scientists responsible for this work consider that the location estimations obtained with this system will contain minimum errors provided that the receiver has sufficiently accurate and up-to-date environmental information. The simplicity of implementation and deployment of the innovative underwater localization system designed makes it even possible for applications that have strict size, power and deployment cost limits to achieve localization.

This research, published under the title 'Anchorless Underwater Acoustic Localization', recently received the Best Paper Award at the 14th IEEE Workshop on Positioning, Navigation and Communications (WPNC 2017), which took place in Bremen (Germany) at the end of last October. The IMDEA Networks researchers who have authored it are Dr. Paolo Casari, a Research Assistant Professor, and Elizaveta Dubrovinskaya, a PhD Student under his supervision. Dr. Roee Diamant, in turn, is the head of the Underwater Acoustic & Navigation Lab (ANL) at the Leon H. Charney School of Marine Sciences of University of Haifa.

Dr. Paolo Casari | EurekAlert!
Further information:
https://www.networks.imdea.org/whats-new/news/2017/underwater-acoustic-localization-marine-mammals-and-vehicles

More articles from Information Technology:

nachricht Reversing cause and effect is no trouble for quantum computers
20.07.2018 | Centre for Quantum Technologies at the National University of Singapore

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>