Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Underwater acoustic localization of marine mammals and vehicles

23.11.2017

Researchers at IMDEA Networks (Spain) in collaboration with University of Haifa (Israel) have developed an underwater acoustic system for the localization of marine mammals, underwater vehicles and other sound sources in the ocean, using no more than a single hydrophone (basically an underwater microphone) as a receiver.

Understanding the oceans, which cover two thirds of the Earth's surface and contain information about climate, the history of our planet and yet-to-be-explored energy resources and forms of life, is essential to the future of our planet. Acoustic wireless information transmission through the oceans is one of the technologies enabling the development of future ocean-observation systems, a stepping stone towards gaining a better perception of so many pivotal issues the oceans seem to hold the key to.


Acquiring experimental data from an underwater acoustic communication system on a boat off the coast of Northern Israel. The depicted buoy belongs to the project THEMO.

Credit: @IMDEA Networks Institute

Usage Restrictions: Image may only be used with appropriate caption or credit.

This new collaborative research effort has focused on one aspect of information transmission underwater: a simpler, more efficient and less costly system for the localization of sound sources found in the oceans. Nowadays the cost of covering a broad area of the ocean with multiple receivers to locate marine mammals or underwater vehicles based on the acoustic signals they produce is excessively high. Thus, this international team of researchers has set itself the objective of resolving the problem of how to estimate the trajectory of a submerged source that emits acoustic signals without using any anchor nodes or a receiving array.

As conventional localization algorithms such as those used in GPS-like systems cannot be directly ported to an underwater scenario, in this innovative system the localization is performed thanks to the incorporation of additional information about the environment surrounding the receiving hydrophone.

In particular, the system relies on information about the variation of submarine topography, of the depths and shapes of underwater terrain, known in technical terms as "bathymetry". These variations that are registered along different directions from the receiver induce changes in signal propagation, and these changes are then modeled and used to discriminate the location of the source of the signal. The result, after the calculations have been cleared of residual "noise", offers a close estimate of the trajectory of the source of sound under examination.

The scientists responsible for this work consider that the location estimations obtained with this system will contain minimum errors provided that the receiver has sufficiently accurate and up-to-date environmental information. The simplicity of implementation and deployment of the innovative underwater localization system designed makes it even possible for applications that have strict size, power and deployment cost limits to achieve localization.

This research, published under the title 'Anchorless Underwater Acoustic Localization', recently received the Best Paper Award at the 14th IEEE Workshop on Positioning, Navigation and Communications (WPNC 2017), which took place in Bremen (Germany) at the end of last October. The IMDEA Networks researchers who have authored it are Dr. Paolo Casari, a Research Assistant Professor, and Elizaveta Dubrovinskaya, a PhD Student under his supervision. Dr. Roee Diamant, in turn, is the head of the Underwater Acoustic & Navigation Lab (ANL) at the Leon H. Charney School of Marine Sciences of University of Haifa.

Dr. Paolo Casari | EurekAlert!
Further information:
https://www.networks.imdea.org/whats-new/news/2017/underwater-acoustic-localization-marine-mammals-and-vehicles

More articles from Information Technology:

nachricht Research alliance: TRUMPF and Fraunhofer IPA ramping up artificial intelligence for industrial use
06.08.2020 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Novel approach improves graphene-based supercapacitors
03.08.2020 | University of Technology Sydney

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>