Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Uncovering the Real Dirt on Granular Flow

05.12.2008
A handful of sand contains countless grains, which interact with each other via friction and impact forces as they slip through your fingers. When a handful becomes a load in an excavator bucket, those interactions multiply exponentially.

By solving large sets of differential equations, researchers can predict how sand or other granular material will move. Assistant Professor Dan Negrut and his team at the University of Wisconsin-Madison Simulation-Based Engineering Laboratory are developing innovative computer simulation methods for parallel computers to analyze granular material motion much faster than is possible with current technologies.

Even a supercomputer takes days to run a simulation charting the motion of millions of sand grains. Negrut hopes his simulation will analyze millions of grains in a single day, if not a matter of hours. The difference lies in how parallel computers approach the task. The central processing unit of a regular computer processes information sequentially, so grains are analyzed one after another. Parallel computers that rely on the graphics-processing unit (GPU) can simultaneously execute one instruction multiple times. This is how a graphics card processes pixels to render scene after scene in video games.

Negrut uses GPU computation to determine in-parallel sand movement. He and his students built a custom computer that handles almost 50,000 parallel computational threads at any given time. Currently, the team is working on detecting which particles collide with each other when, for example, granular material is scooped up by an excavator or driven over by a car.

“The task is challenging because there are hundreds of thousands of collisions you have to track,” Negrut says, adding the preliminary data on collision detection developed by graduate students Toby Heyn and Justin Madsen look promising.

Once Negrut and his students can accurately predict collisions between individual particles, they will determine what frictional contact force is actually at work between the particles. For this, they will collaborate with Professor Alessandro Tasora from the University of Parma, Italy. Heyn is traveling to Italy this January, and Tasora will visit the team in Madison next year. (Tasora visited Negrut in February.)

“Right now we’re expanding the type of problems and size of problems you can solve with a simulation,” says Heyn. “Simulation is important because it’s often faster and cheaper than experimental testing.”

Simulations of granular flow dynamics could be particularly useful for vehicle design. The team has worked with P&H Mining Equipment in Milwaukee, which builds three-million-pound electric shovels to dig in the oil sands near Alberta, Canada. Negrut’s simulations may help the company develop optimal designs for its equipment in a cost-efficient manner.

“You can change the parameters of a design easily and then quickly run a computer simulation to understand how the design change is impacting the overall performance of the computer model,” says Heyn.

In addition to construction equipment, Negrut’s simulations could lead to improved design of tire treads for vehicles that drive on mostly sand or dirt roads. Beyond vehicle applications, researchers could use such simulations to study atomic particles, pebble-bed nuclear reactors, pressure in silos, and crystals in prescription pills. The National Science Foundation and U.S. Army subcontracts support Negrut’s work, and NVIDIA Corp., a GPU manufacturer, is also a sponsor. Recently, P&H Mining has offered additional funding.

Sandra Knisely | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Information Technology:

nachricht New Foldable Drone Flies through Narrow Holes in Rescue Missions
12.12.2018 | Universität Zürich

nachricht NIST's antenna evaluation method could help boost 5G network capacity and cut costs
11.12.2018 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>