Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three years research on next generation of mobile communication (5G) sucessfully finished

06.07.2018

EU project 5G-XHaul coordinated by IHP pave the way for further wireless innovations

The EU-funded research project 5G-XHaul, coordinated by IHP – Innovations for High Performance Microelectronics, concluded at the end of June 2018 with the final event at the University of Bristol, UK. The event included a set of technical demonstrations hosted at the Smart Internet Lab and a final field trial across the city of Bristol.


Technical demonstrations of the results of 5G-XHaul in the Smart Internet Lab during the final event at the University of Bristol.

University of Bristol

The main purpose of 5G-XHaul was to help ensure that every smartphone user has a reliable, uninterrupted and very high speed network connection. The project also aimed to find solutions to the growing demand for broadband connections.

To meet this demand cost-effective yet powerful networks had to be developed and one of 5G-XHaul’s main focuses was on ensuring inner city areas, stadiums, airports and other transport hubs are connected to the core telecommunications network with dynamically adaptive communication. It also supports mass events where peaks in demand are likely and dynamic allocation of resources is, therefore, necessary to efficiently meet the quality requirements of the end-users.

A city-wide field trial, carried out in Bristol, integrating the novel 5G-XHaul optical and wireless technologies, showcased the overall project architecture. The functionality and end-to-end performance of this field demonstration verified the suitability of the 5G-XHaul solution for 5G.

“All demonstrations ran very smoothly and robustly showing the developed concepts in practical applications. This is the result of some intense work and constructive cooperation over the last three years. All partners will benefit from the outcome of this joint work which is reflected in scientific publications, standards, patents and product developments. In fact, most partners are continuing their cooperation in another European Project with the acronym 5G-PICTURE.”, said Prof. Eckhard Grass (IHP).

5G-XHaul is a Phase 1, collaborative project under the framework of the 5G-Public Private Partnership (5G PPP), which itself is a joint initiative between the European Commission and the European information and communications industry and has been set up to specify the requirements for 5G and once done aid in developing 5G solutions. The Project was funded by the EU research and innovation program Horizon 2020.

“IHP has actively and successfully coordinated the H2020 project 5G-XHaul, and was involved in several Working Groups of the European 5G Public Private Partnership initiative (5G-PPP). 5G-XHaul, a project of 12 Partners from industries and academia has fostered several individual partnerships to the benefit of all parties involved. IHP has mainly contributed its expertise in mmWave communications and localization techniques and has developed further the existing skills, which is reflected in the different tangible results, as well as publications and patents produced within the duration of the project. One key result has been the development and integrating of the 5G-XHaul mmWave beamforming Analog Front-End solution, which will be used in future activities and projects.”, stated Dr. Jesús Gutiérrez Terán (IHP).

Weitere Informationen:

https://ec.europa.eu/programmes/horizon2020/
https://www.5g-xhaul-project.eu/
http://www.bristol.ac.uk/engineering/research/smart/projects/5g-xhaul/

Anne-Kristin Jentzsch | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht NIST-led team develops tiny low-energy device to rapidly reroute light in computer chips
15.11.2019 | National Institute of Standards and Technology (NIST)

nachricht Fraunhofer Radio Technology becomes part of the worldwide Telecom Infra Project (TIP)
14.11.2019 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Structure of a mitochondrial ATP synthase

19.11.2019 | Life Sciences

The measurements of the expansion of the universe don't add up

19.11.2019 | Physics and Astronomy

Ayahuasca compound changes brainwaves to vivid 'waking-dream' state

19.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>