Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Room's ambience fingerprinted by phone

28.09.2009
Your smart phone may soon be able to know not only that you're at the mall, but whether you're in the jewelry store or the shoe store.

Duke University computer engineers have made use of standard cell phone features – accelerometers, cameras and microphones – to turn the unique properties of a particular space into a distinct fingerprint.

While standard global positioning systems (GPS) are only accurate to 10 meters (32 feet) and do not work indoors, the new application is designed to work indoors and can be as precise as telling if a user is on one side of an interior wall or another.

The system, dubbed SurroundSense, uses the phone's built-in camera and microphone to record sound, light and colors, while the accelerometer records movement patterns of the phone's user. This information is sent to a server, which knits the disparate information together into a single fingerprint.

"You can't tell much from any of the measurements individually, but when combined, the optical, acoustic and motion information creates a unique fingerprint of the space," said Ionut Constandache, graduate student in computer science. He presented the details of SurroundSense at the 15th International Conference on Mobile Computing and Networking in Bejing on Sept. 25.

For example, in a bar, people spend little time moving and most time sitting, while the room is typically dark and noisy. In contrast, a Target store will be brightly lit with vibrant colors – especially red – with movement up and down aisles. SurroundSense can tell these differences.

Students of Romit Roy Chouhury, Duke assistant professor of electrical and computer engineering and senior member of the research team, fanned out across Durham, N.C. with their cell phones, collecting data in different types of businesses. So that they would not bias the measurements, the students "mirrored" the actions of selected customers.

"We went to 51 different stores and found that SurroundSense achieved an average accuracy of about 87 percent when all of the sensing capabilities were used," Constandache said.

As more people use the application, it gets "smarter."

"As the system collects and analyzes more and more information about a particular site, the fingerprint becomes that much more precise," said Roy Choudhury. "Not only is the ambience different at different locations, but also can be different at different times at the same location."

SurroundSense collects data at different time points, so it would be able to distinguish a Starbucks store at the morning rush when there are many customers from the slower period in mid-afternoon.

"We believe that SurroundSense is an early step toward a long-standing challenge of improving indoor localization," Roy Choudhury said.

Currently, in order for the phone to collect data, it must be held with the camera facing down, though the researchers are working on strategies for the application to work if the phone is in a pocket, case or handbag. However, as the researchers pointed out, phones are now coming onto the market that are worn on the wrist or around the neck on a necklace.

As in many technical advances, it appears that batteries can be an Achilles' heel. The Duke researchers are now considering the tradeoffs between having the application "on" all the time, which drains the battery faster, or having it take measurements at regular intervals. They are also trying to determine whether the entire application should be housed on the server, the phone, or some combination of the two.

Roy Choudhury's research is supported by the National Science Foundation, Nokia, Verizon and Microsoft Research. Duke undergraduate Martin Azizyan also participated in the project.

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Information Technology:

nachricht Enjoying virtual-reality-entertainment without headache or motion sickness
19.09.2018 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Scientists use artificial neural networks to predict new stable materials
18.09.2018 | University of California - San Diego

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

Im Focus: Graphene enables clock rates in the terahertz range

Graphene is considered a promising candidate for the nanoelectronics of the future. In theory, it should allow clock rates up to a thousand times faster than today’s silicon-based electronics. Scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) and the University of Duisburg-Essen (UDE), in cooperation with the Max Planck Institute for Polymer Research (MPI-P), have now shown for the first time that graphene can actually convert electronic signals with frequencies in the gigahertz range – which correspond to today’s clock rates – extremely efficiently into signals with several times higher frequency. The researchers present their results in the scientific journal “Nature”.

Graphene – an ultrathin material consisting of a single layer of interlinked carbon atoms – is considered a promising candidate for the nanoelectronics of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Making better use of enzymes: a new research project at Jacobs University

19.09.2018 | Life Sciences

Light provides spin

19.09.2018 | Physics and Astronomy

Enjoying virtual-reality-entertainment without headache or motion sickness

19.09.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>