Researchers Demonstrate a Better Way for Computers to ‘See’

Why it matters: The neural processing involved in visually recognizing even the simplest object in a natural environment is profound—and profoundly difficult to mimic. Neuroscientists have made broad advances in understanding the visual system, but much of the inner workings of biologically-based systems remain a mystery.

Using Graphics Processing Units (GPUs) — the same technology video game designers use to render life-like graphics – MIT and Harvard researchers are now making progress faster than ever before. “We made a powerful computing system that delivers over hundred fold speed-ups relative to conventional methods,” said Nicolas Pinto, a PhD candidate in James DiCarlo’s lab at the McGovern Institute for Brain Research at MIT. “With this extra computational power, we can discover new vision models that traditional methods miss.” Pinto co-authored the PLoS study with David Cox of the Visual Neuroscience Group at the Rowland Institute at Harvard.

How they did it: Harnessing the processing power of dozens of high-performance NVIDIA graphics cards and PlayStation 3s gaming devices, the team designed a high-throughput screening process to tease out the best parameters for visual object recognition tasks. The resulting model outperformed a crop of state-of-the-art vision systems across a range of tests — more accurately identifying a range of objects on random natural backgrounds with variation in position, scale, and rotation. Had the team used conventional computational tools, the one-week screening phase would have taken over two years to complete.

Next steps: The researchers say that their high-throughput approach could be applied to other areas of computer vision, such as face identification, object tracking, pedestrian detection for automotive applications, and gesture and action recognition. Moreover, as scientists better understand what components make a good artificial vision system, they can use these hints to better understand the human brain as well.

Watch how the MIT/Harvard researchers are finding a better way for computers to 'see' : http://www.rowland.harvard.edu/rjf/cox/plos_video.html

Source: Pinto N, Doukhan D, DiCarlo JJ, Cox DD. A high-throughput screening approach to good forms of biologically-inspired visual representation. PLoS Computational Biology. Nov 26 2009. Read the article here: http://www.ploscompbiol.org/doi/pcbi.1000579

Funding: National Institutes of Health, McKnight Endowment for Neuroscience, Jerry and Marge Burnett, the McGovern Institute for Brain Research at MIT, and the Rowland Institute at Harvard. Hardware support provided by the NVIDIA Corporation.

Media Contact

Jen Hirsch Newswise Science News

More Information:

http://www.mit.edu

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors