Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research on light-matter interaction could improve electronic and optoelectronic devices

11.10.2018

Fundamental research sheds light on new many-particle quantum physics in atomically thin semiconductors

A paper published in Nature Communications by Sufei Shi, assistant professor of chemical and biological engineering at Rensselaer, increases our understanding of how light interacts with atomically thin semiconductors and creates unique excitonic complex particles, multiple electrons, and holes strongly bound together.


Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

Credit: Rensselaer Polytechnic Institute

These particles possess a new quantum degree of freedom, called "valley spin." The "valley spin" is similar to the spin of electrons, which has been extensively used in information storage such as hard drives and is also a promising candidate for quantum computing.

The paper, titled "Revealing the biexciton and trion-exciton complexes in BN encapsulated WSe2," was published in the Sept. 13, 2018, edition of Nature Communications. Results of this research could lead to novel applications in electronic and optoelectronic devices, such as solar energy harvesting, new types of lasers, and quantum sensing.

Shi's research focuses on low dimensional quantum materials and their quantum effects, with a particular interest in materials with strong light-matter interactions. These materials include graphene, transitional metal dichacogenides (TMDs), such as tungsten diselenide (WSe2), and topological insulators.

TMDs represent a new class of atomically thin semiconductors with superior optical and optoelectronic properties. Optical excitation on the two-dimensional single-layer TMDs will generate a strongly bound electron-hole pair called an exciton, instead of freely moving electrons and holes as in traditional bulk semiconductors.

This is due to the giant binding energy in monolayer TMDs, which is orders of magnitude larger than that of conventional semiconductors. As a result, the exciton can survive at room temperature and can thus be used for application of excitonic devices.

As the density of the exciton increases, more electrons and holes pair together, forming four-particle and even five-particle excitonic complexes. An understanding of the many-particle excitonic complexes not only gives rise to a fundamental understanding of the light-matter interaction in two dimensions, it also leads to novel applications, since the many-particle excitonic complexes maintain the "valley spin" properties better than the exciton. However, despite recent developments in the understanding of excitons and trions in TMDs, said Shi, an unambiguous measure of the biexciton-binding energy has remained elusive.

"Now, for the first time, we have revealed the true biexciton state, a unique four-particle complex responding to light," said Shi. "We also revealed the nature of the charged biexciton, a five-particle complex."

At Rensselaer, Shi's team has developed a way to build an extremely clean sample to reveal this unique light-matter interaction. The device was built by stacking multiple atomically thin materials together, including graphene, boron nitride (BN), and WSe2, through van der Waals (vdW) interaction, representing the state-of-the-art fabrication technique of two-dimensional materials.

This work was performed in collaboration with the National High Magnetic Field Laboratory in Tallahasee, Florida, and researchers at the National Institute for Materials Science in Japan, as well as with Shengbai Zhang, the Kodosky Constellation Professor in the Department of Physics, Applied Physics, and Astronomy at Rensselaer, whose work played a critical role in developing a theoretical understanding of the biexciton.

The results of this research could potentially lead to robust many-particle optical physics, and illustrate possible novel applications based on 2D semiconductors, Shi said. Shi has received funding from the Air Force Office of Scientific Research. Zhang was supported by the Department of Energy, Office of Science.

###

The research also was recently featured in Nature Nanotechnology.

Shi joined the Department of Chemical and Biological Engineering at Rensselaer in July 2015. He earned his B.S. at Nanjing University, and his Ph.D. at Cornell University. He then held a postdoctoral fellowship at UC Berkeley. Shi also holds a joint appointment with the Department of Electrical, Computer, and Systems Engineering at Rensselaer.

About Rensselaer Polytechnic Institute

Rensselaer Polytechnic Institute, founded in 1824, is America's first technological research university. For nearly 200 years, Rensselaer has been defining the scientific and technological advances of our world. Rensselaer faculty and alumni represent 86 members of the National Academy of Engineering, 18 members of the National Academy of Sciences, 25 members of the American Academy of Arts and Sciences, 8 members of the National Academy of Medicine, 8 members of the National Academy of Inventors, and 5 members of the National Inventors Hall of Fame, as well as 6 National Medal of Technology winners, 5 National Medal of Science winners, and a Nobel Prize winner in Physics. With 7,000 students and nearly 100,000 living alumni, Rensselaer is addressing the global challenges facing the 21st century--to change lives, to advance society, and to change the world. To learn more, go to http://www.rpi.edu.

Contact

newsmedia@rpi.edu

Visit the Rensselaer research and discovery blog: everydaymatters.rpi.edu

Follow us on Twitter: http://www.twitter.com/RPInews

http://news.rpi.edu/ 

News Media | EurekAlert!
Further information:
https://news.rpi.edu/content/2018/10/10/research-light-matter-interaction-could-lead-improved-electronic-and

More articles from Information Technology:

nachricht German Research Foundation supports new theoretical physics project at Jacobs University Bremen
18.12.2018 | Jacobs University Bremen gGmbH

nachricht New Foldable Drone Flies through Narrow Holes in Rescue Missions
12.12.2018 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>