Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research makes robots better at following spoken instructions

14.07.2017

A new system based on research by Brown University computer scientists makes robots better at following spoken instructions, no matter how abstract or specific those instructions may be. The development, which was presented this week at the Robotics: Science and Systems 2017 conference in Boston, is a step toward robots that are able to more seamlessly communicate with human collaborators.

The research was led by Dilip Arumugam and Siddharth Karamcheti, both undergraduates at Brown when the work was performed (Arumugam is now a Brown graduate student). They worked with graduate student Nakul Gopalan and postdoctoral researcher Lawson L.S. Wong in the lab of Stefanie Tellex, a professor of computer science at Brown.


People give instructions at varying levels of abstraction -- from the simple and straightforward ("Go north a bit.") to more complex commands that imply a myriad of subtasks ("Take the block to the blue room."). A new software system helps robots better deal with instructions whatever their level of abstraction.

Credit: Tellex Lab / Brown University

"The issue we're addressing is language grounding, which means having a robot take natural language commands and generate behaviors that successfully complete a task," Arumugam said. "The problem is that commands can have different levels of abstraction, and that can cause a robot to plan its actions inefficiently or fail to complete the task at all."

For example, imagine someone in a warehouse working side-by-side with a robotic forklift. The person might say to the robotic partner, "Grab that pallet." That's a highly abstract command that implies a number of smaller sub-steps -- lining up the lift, putting the forks underneath and hoisting it up. However, other common commands might be more fine-grained, involving only a single action: "Tilt the forks back a little," for example.

... more about:
»algorithm »computer science

Those different levels of abstraction can cause problems for current robot language models, the researchers say. Most models try to identify cues from the words in the command as well as the sentence structure and then infer a desired action from that language. The inference results then trigger a planning algorithm that attempts to solve the task. But without taking into account the specificity of the instructions, the robot might overplan for simple instructions, or underplan for more abstract instructions that involve more sub-steps. That can result in incorrect actions or an overly long planning lag before the robot takes action.

But this new system adds an additional level of sophistication to existing models. In addition to simply inferring a desired task from language, the new system also analyzes the language to infer a distinct level of abstraction.

"That allows us to couple our task inference as well as our inferred specificity level with a hierarchical planner, so we can plan at any level of abstraction," Arumugam said. "In turn, we can get dramatic speed-ups in performance when executing tasks compared to existing systems."

To develop their new model, the researchers used Mechanical Turk, Amazon's crowdsourcing marketplace, and a virtual task domain called Cleanup World. The online domain consists of a few color-coded rooms, a robotic agent and an object that can be manipulated -- in this case, a chair that can be moved from room to room.

Mechanical Turk volunteers watched the robot agent perform a task in the Cleanup World domain -- for example, moving the chair from a red room to an adjacent blue room. Then the volunteers were asked to say what instructions they would have given the robot to get it to perform the task they just watched. The volunteers were given guidance as to the level of specificity their directions should have. The instructions ranged from the high-level: "Take the chair to the blue room" to the stepwise-level: "Take five steps north, turn right, take two more steps, get the chair, turn left, turn left, take five steps south." A third level of abstraction used terminology somewhere in between those two.

The researchers used the volunteers' spoken instructions to train their system to understand what kinds of words are used in each level of abstraction. From there, the system learned to infer not only a desired action, but also the abstraction level of the command. Knowing both of those things, the system could then trigger its hierarchical planning algorithm to solve the task from the appropriate level.

Having trained their system, the researchers tested it in both the virtual Cleanup World and with an actual Roomba-like robot operating in a physical world similar to the Cleanup World space. They showed that when a robot was able to infer both the task and the specificity of the instructions, it responded to commands in one second 90 percent of the time. In comparison, when no level of specificity was inferred, half of all tasks required 20 or more seconds of planning time.

"We ultimately want to see robots that are helpful partners in our homes and workplaces," said Tellex, who specializes in human-robot collaboration. "This work is a step toward the goal of enabling people to communicate with robots in much the same way that we communicate with each other."

###

The work was supported by the National Science Foundation (IIS-1637614), DARPA (W911NF-15-1-0503), NASA (NNX16AR61G) and the Croucher Foundation.

Media Contact

Kevin Stacey
kevin_stacey@brown.edu
401-863-3766

 @brownuniversity

http://news.brown.edu/ 

Kevin Stacey | EurekAlert!

Further reports about: algorithm computer science

More articles from Information Technology:

nachricht Reversing cause and effect is no trouble for quantum computers
20.07.2018 | Centre for Quantum Technologies at the National University of Singapore

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>