Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intelligent software helps build perfect robotic hand

29.11.2007
Scientists in Portsmouth and Shanghai are working on intelligent software that will take them a step closer to building the perfect robotic hand.

Using artificial intelligence, they are creating software which will learn and copy human hand movements.

They hope to replicate this in a robotic device which will be able to perform the dexterous actions only capable today by the human hand.

Dr Honghai Liu, senior lecturer at the University of Portsmouth’s Institute of Industrial Research, and Professor Xiangyang Zhu from the Robotics Institute at Jiao Tong University in Shanghai, were awarded a Royal Society grant to further their research.

The technology has the potential to revolutionise the manufacturing industry and medicine and scientists hope that in the future it could be used to produce the perfect artificial limb.

“A robotic hand which can perform tasks with the dexterity of a human hand is one of the holy grails of science,” said Dr Honghai Liu, who lectures artificial intelligence at the University’s Institute of Industrial Research. The Institute specialises in artificial intelligence including intelligent robotics, image processing and intelligent data analysis.

He said: “We are talking about having super high level control of a robotic device.

Nothing which exists today even comes close.”

Dr Liu used a cyberglove covered in tiny sensors to capture data about how the human hand moves. It was filmed in a motion capture suite by eight high-resolution CCD cameras with infrared illumination and measurement accuracy up to a few millimetres.

Professor Xiangyang Zhu from The Robotics Institute at the Jiao Tong University in Shanghai, which is recognised as one of the world-class research institutions on robotics, said that the research partnership would strengthen the interface between artificial intelligence techniques and robotics and pave the way for a new chapter in robotics technology.

“Humans move efficiently and effectively in a continuous flowing motion, something we have perfected over generations of evolution and which we all learn to do as babies. Developments in science mean we will teach robots to move in the same way.”

Lisa Egan | alfa
Further information:
http://www.port.ac.uk

More articles from Information Technology:

nachricht Quantum computers by AQT and University of Innsbruck leverage Cirq for quantum algorithm development
16.09.2019 | Universität Innsbruck

nachricht Artificial Intelligence speeds up photodynamics simulations
12.09.2019 | University of Vienna

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Im Focus: Physicists from Stuttgart prove the existence of a supersolid state of matte

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Too much of a good thing: overactive immune cells trigger inflammation

16.09.2019 | Life Sciences

Scientists create a nanomaterial that is both twisted and untwisted at the same time

16.09.2019 | Materials Sciences

Researchers have identified areas of the retina that change in mild Alzheimer's disease

16.09.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>