Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taking sensor network technology to a smarter level

08.03.2006


Barrels of chemicals that ‘talk’ to each other to improve safety and smart shelves that automatically log inventory changes are just some of the ways businesses stand to benefit from new sensor network technology currently being developed in Europe.

The IST-funded CoBIs project is going a step beyond existing Radio Frequency Identification (RFID) systems – the generally passive smart tags used to identify goods, pets and even people - to create Collaborative Business Items (CoBIs) that can shift a substantial part of business processes from resource-intensive back-end systems to systems embedded in the products themselves. With sensors, wireless communication and computing components attached, the goods or equipment become smart – chemical drums will warn operators when the storage limit in a warehouse is reached, if a leak occurs or if one is placed in the wrong location.

“What we are doing is making sensor network technology useful to businesses by creating a system that responds to the need for real-time information. It allows goods to act and react automatically to changes at the local level, and warn operators of the change,” CoBIs coordinator Stephan Haller at SAP Research in Germany explains.



Targeting the petrochemical industry as likely early adopters

Though CoBIs has a potentially limitless number of usage scenarios, the project is concentrating on employing them in the petrochemical industry, which is likely to be an early adopter of the technology.

The system will be tested at a BP plant in Hull in the United Kingdom later this year where the sensor nodes will be attached to barrels of chemicals and used to monitor compliance with safety regulations on the storage of hazardous materials. If all goes well, Haller estimates that the full system - including middleware components and an application development environment - could be adopted commercially in the industry within three to five years.

In the chemical sector, where even the slightest mistake in managing an inventory of volatile materials could mean disaster, that will undoubtedly lead to increased safety.

Unlike most RFID systems – an emerging technology in its own right – that mainly work passively to distinguish between tagged objects with their own unique identifier, CoBIs-enabled objects work actively by incorporating embedded sensing, computing and wireless short-range communication. They can monitor the state and environmental conditions of the goods they are attached to, communicate peer-to-peer and collaborate to observe conditions that no single sensor would be able to detect, and they can feed the information into back-end systems automatically within the project’s service-oriented architecture.

In the usage scenario for BP, this will not only provide automatic inventory tracking of chemical drums but will set off visual and audio alarms embedded in the sensors and in the storage facility if too many drums are stored together or incorrectly. The sensors could also be used to monitor the environmental conditions chemicals are subjected to during transportation or storage, allowing companies to detect a shipment that may have lost its properties and discard it rather than inadvertently – and potentially dangerously – using it in a later production process.

With potential for many other sectors

The same sensor network technology could be applied in other sectors, such as food, pharmaceuticals and healthcare, where monitoring the condition of a product is crucial.

In retail, where RFID is already being used to track inventory and prevent theft, CoBIs could help solve the RFID reader collision problem. RFID readers equipped with CoBIs nodes coordinate duty cycles and power levels autonomously with each other. This allows for a physical reorganisation of the shelves without the need for reconfiguring the RF parameters manually. The ‘adaptive smart shelves’ concept is due to be tested by the project partner Infineon in Austria later this year.

There is also the possibility to use CoBIs to create smart clothing that could be used to protect workers in hazardous environments.

“One idea is that sensors embedded in a suit could be used to check whether a person meets certain conditions to access an area of a factory where a gas leak has occurred, for example. The sensors nodes would communicate with other nodes in the building and in other people’s clothing and equipment to determine access rights to ensure safety regulations are complied with. Only if all required workers with the correct training certificates, and all necessary safety and maintenance equipment are present, would the door open for them,” Haller explains.

Perhaps most importantly for businesses, the CoBIs sensor network is designed to be easy to deploy, highly scalable to meet the needs of different companies and industries, and cost effective.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/80930

More articles from Information Technology:

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

nachricht Microscopic trampoline may help create networks of quantum computers
17.07.2018 | University of Colorado at Boulder

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>