Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Towards quicker high level chip design

23.03.2004


Competitiveness in the chip design and fabrication sector depends on fast turn-arounds and ever shorter concept-to-product cycles. New hardware design tools based on object-oriented methods should help shorten the design cycle.



The design gap

The complexity of recently available products, such as new 3G mobile phones, camera and PDA combos, is staggering and requires a huge design effort. "There is no doubt that electronic systems of the future are going to be very complex," says Frank Oppenheimer of the OFFIS Research Institute, Oldenburg, and coordinator of the IST project ODETTE. "The complexity has been on the increase for a decade or so and we expect the trend to continue for the next 10-15 years."


Chip fabrication technology is improving all the time leading to ever smaller components. This means that chips can be designed to handle greater complexity or, for the same level of complexity, require smaller chip areas and lower power consumption. This opens up many new opportunities.

"The problem is that the design methodologies are, from a technical standpoint, at least ten years old," comments Oppenheimer. "There is a gap - we call it the design gap - between the methodologies and the technologies available. The tragedy is that these new opportunities cannot be fully exploited with current design methodologies.

"Suppose that, ten years ago, it took a year to design a system. Today, the requirement might be for a system with five times the complexity; using the same methodology, it would take five years to develop. No-one in industry would even consider such a long design cycle," adds Oppenheimer.

Handling complexity

"When chips were first designed, decades ago, it was carried out at the level of individual transistors and gates," says Oppenheimer. "Over the years, improvements in design methodology enabled designers to work at a much higher level, for example in terms of the registers and adders found within a microprocessor. This is the RT (Register Transfer) level. These are the basic building blocks within the micro-architecture of application-specific hardware devices (ASICs)."

"Nevertheless, despite this level of complexity, the designer would still be thinking at quite a low level, for instance in terms of basic integer arithmetic or wiring individual components together on the chip. ODETTE enables hardware designers to think in terms of much more abstract data types, perform complex operations with them and provide the means for high-level communication modelling," says Oppenheimer.

"We have tried to learn from the software domain, which is an area that is more advanced in the handling of complexity," observes Oppenheimer. "The object-oriented approach has a good track record, and concepts such as Classes and Inheritance are used in the ODETTE methodology. For example, whereas conventional chip design uses the concept of integer arithmetic, the ODETTE methodology would be quite at home working with TCP/IP packets. All the designer would have to do is to model the packet as a Class. We’ve significantly raised the level of abstraction of hardware designs and a spin-off will be to raise the level of productivity."

Putting theory into practice

There were two dimensions to the ODETTE project. One was to carry out research into the use of object-oriented methods as a means of generating hardware designs. The other was to develop a translator that takes an object-oriented hardware specification and translates it, using hardware synthesis, into something that can be inserted into an industrial design flow for real silicon.

Hardware synthesis based on object-oriented specifications called for the development of new synthesis techniques and tools. This lead to the definition of an extended SystemC/C++ synthesis subset, and a prototype synthesis tool capable of processing it. ODETTE presented a whole new design environment, and many other topics had to be addressed. First class libraries, for example, had to be created to support the hardware synthesis and verification techniques had to be developed, and these greatly benefited from the higher level of abstraction inherent in object-oriented methods.

"The fabrication process involves a number of steps," says Oppenheimer. "You make a software-like description of the hardware using a language such as VHDL or Verilog. You then use a synthesis tool, which employs a chain of tools to eventually produce something that can be processed on a silicon wafer. The ODETTE implementation can be thought of, in effect, as another element in the chain of tools, which sits on top of all the other tools. Only with tools such as ODETTE will tomorrow’s designers be able to create high-functionality chips with several hundred million transistors."

"The research work of ODETTE continues in related fields at OFFIS," says Oppenheimer. "As for the future, we hope the synthesis tool will become commercialised. Part of the methodology, in particular the Language Reference Manual and the simulation library of OSSS, can be downloaded free of charge."

Contact:
Frank Oppenheimer
Manager System Design Methodology Group
OFFIS - R&D Division Embedded Hardware-/Software-Systems
Escherweg 2
D- 26121 Oldenburg
Germany
Tel: +49-441-9722285
Fax: +49-441-9722282
Email: Frank.Oppenheimer@offis.de
Source: Based on information from ODETTE

Tara Morris | IST Results
Further information:
http://istresults.cordis.lu/index.cfm?section=news&tpl=article&BrowsingType=Features&ID=63144

More articles from Information Technology:

nachricht Novel communications architecture for future ultra-high speed wireless networks
17.06.2019 | IMDEA Networks Institute

nachricht Concert of magnetic moments
14.06.2019 | Forschungszentrum Juelich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Uncovering hidden protein structures

18.06.2019 | Life Sciences

Monitoring biodiversity with sound: how machines can enrich our knowledge

18.06.2019 | Life Sciences

Schizophrenia: Adolescence is the game-changer

18.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>