Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue’s self-assembled ’nanorings’ could boost computer memory

11.12.2003


Shown are cobalt nanoparticles that have self-assembled into bracelet-like "nanorings." The rings’ magnetic flux can be oriented in one of two directions – clockwise or counterclockwise – a characteristic that could represent binary numbers in magnetic memory devices. Because the flux direction remains even without a constant power supply, it is possible these rings could lead to so-called "non-volatile" computer memory, which would not be wiped out in the event of a system failure. (Graphic/VCH Publishers)


Recent nanotechnology research at Purdue University could pave the way toward faster computer memories and higher density magnetic data storage, all with an affordable price tag.

Just like the electronics industry, the data storage industry is on the move toward nanoscale. By shrinking components to below 1/10,000th the width of a human hair, manufacturers could make faster computer chips with more firepower per square inch. However, the technology for making devices in that size range is still being developed, and the smaller the components get, the more expensive they are to produce.

Purdue chemist Alexander Wei may have come up with a surprisingly simple and cheap solution to the shrinking data storage problem. Wei’s research team has found a way to create tiny magnetic rings from particles made of cobalt. The rings are much less than 100 nanometers across – an important threshold for the size-conscious computer industry – and can store magnetic information at room temperature. Best of all, these "nanorings" form all on their own, a process commonly known as self-assembly.



"The cobalt nanoparticles which form the rings are essentially tiny magnets with a north and south pole, just like the magnets you played with as a kid," said Wei, who is an associate professor of chemistry in Purdue’s School of Science. "The nanoparticles link up when they are brought close together. Normally you might expect these to form chains, but under the right conditions, the particles will assemble into rings instead."

The research appeared as a "Very Important Paper" in the November issue of the chemistry journal Angewandte Chemie. Wei collaborated with lead author Steven Tripp and Rafal Dunin-Borkowski, an electron microscopist at the University of Cambridge.

The magnetic dipoles responsible for nanoring formation also produce a collective magnetic state known as flux closure. There is strong magnetic force, or flux, within the rings themselves, stemming from the magnetic poles each particle possesses. But after the particles form rings, the net magnetic effect is zero outside. Tripp developed conditions leading to the self-assembly of the cobalt nanorings, then initiated a collaboration with Dunin-Borkowski to study their magnetic properties. By using a technique known as electron holography, the researchers were able to observe directly the flux-closure states, which are stable at room temperature.

"Magnetic rings are currently being considered as memory elements in devices for long-term data storage and magnetic random-access memory," Wei said. "The rings contain a magnetic field, or flux, which can flow in one of two directions, clockwise or counterclockwise. Magnetic rings can thus store binary information, and unlike most magnets, the rings keep the flux to themselves. This minimizes crosstalk and reduces error during data processing."

When you turn on your computer, it loads its operating system and whatever documents you are working on into its RAM, or random-access memory. RAM is fast, enabling your computer to make quick changes to whatever is stored there, but its chief drawback is its volatility – it cannot perform without a continuous supply of electricity. Many people have experienced the frustration of losing an unsaved document when their computer suddenly crashes or loses power, causing all the data stored in RAM to vanish.

"Nonvolatile memory based on nanorings could in theory be developed," Wei said. " For the moment, the nanorings are simply a promising development."

Preliminary studies have shown that the nanorings’ magnetic states can be switched by applying a magnetic field, which could be used to switch a nanoring "bit" back and forth between 1 and 0. But according to Wei, perhaps the greatest potential for his group’s findings lay in the possibility of combining nanorings with other nanoscale structures.

"Integrating the cobalt nanorings with electrically conductive nanowires, which can produce highly localized magnetic fields for switching flux closure states, is highly appealing." he said. "Such integration may be possible by virtue of self-assembly."

Several research groups have created magnetic rings before but have relied on a "top-down" manufacturing approach, which imposes serious limitations on size reduction.

"The fact that cobalt nanoparticles can spontaneously assemble into rings with stable magnetic properties at room temperature is really remarkable," Wei said. "While this discovery will not make nonvolatile computer memory available tomorrow, it could be an important step towards its eventual development. Systems like this could be what the data storage industry is looking for."

Wei’s group is associated with the Birck Nanotechnology Center, which will be one of the largest university facilities in the nation dedicated to nanotechnology research when construction is completed in 2005. Nearly 100 groups associated with the center are pursuing research topics such as nanometer-sized machines, advanced materials for nanoelectronics and nanoscale biosensors.

Funding for Wei’s research was provided in part by the National Science Foundation and the Department of Defense.

Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu
Source: Alexander Wei, (765) 494-5257, alexwei@purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Chad Boutin | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/031210.Wei.nanorings.html

More articles from Information Technology:

nachricht Research on light-matter interaction could improve electronic and optoelectronic devices
11.10.2018 | Rensselaer Polytechnic Institute

nachricht Unique Deep Learning Infrastructure - DFKI receives first NVIDIA DGX-2 supercomputer in Europe
11.10.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

Im Focus: Dynamics of individual proteins

New measurement method allows researchers to precisely follow the movement of individual molecules over long periods of time

The function of proteins – the molecular tools of the cell – is governed by the interplay of their structure and dynamics. Advances in electron microscopy have...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

Major Project: The New Silk Road

01.10.2018 | Event News

 
Latest News

Unravelling the genetics of fungal fratricide

16.10.2018 | Life Sciences

Blue phosphorus -- mapped and measured for the first time

16.10.2018 | Physics and Astronomy

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>