Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue’s self-assembled ’nanorings’ could boost computer memory

11.12.2003


Shown are cobalt nanoparticles that have self-assembled into bracelet-like "nanorings." The rings’ magnetic flux can be oriented in one of two directions – clockwise or counterclockwise – a characteristic that could represent binary numbers in magnetic memory devices. Because the flux direction remains even without a constant power supply, it is possible these rings could lead to so-called "non-volatile" computer memory, which would not be wiped out in the event of a system failure. (Graphic/VCH Publishers)


Recent nanotechnology research at Purdue University could pave the way toward faster computer memories and higher density magnetic data storage, all with an affordable price tag.

Just like the electronics industry, the data storage industry is on the move toward nanoscale. By shrinking components to below 1/10,000th the width of a human hair, manufacturers could make faster computer chips with more firepower per square inch. However, the technology for making devices in that size range is still being developed, and the smaller the components get, the more expensive they are to produce.

Purdue chemist Alexander Wei may have come up with a surprisingly simple and cheap solution to the shrinking data storage problem. Wei’s research team has found a way to create tiny magnetic rings from particles made of cobalt. The rings are much less than 100 nanometers across – an important threshold for the size-conscious computer industry – and can store magnetic information at room temperature. Best of all, these "nanorings" form all on their own, a process commonly known as self-assembly.



"The cobalt nanoparticles which form the rings are essentially tiny magnets with a north and south pole, just like the magnets you played with as a kid," said Wei, who is an associate professor of chemistry in Purdue’s School of Science. "The nanoparticles link up when they are brought close together. Normally you might expect these to form chains, but under the right conditions, the particles will assemble into rings instead."

The research appeared as a "Very Important Paper" in the November issue of the chemistry journal Angewandte Chemie. Wei collaborated with lead author Steven Tripp and Rafal Dunin-Borkowski, an electron microscopist at the University of Cambridge.

The magnetic dipoles responsible for nanoring formation also produce a collective magnetic state known as flux closure. There is strong magnetic force, or flux, within the rings themselves, stemming from the magnetic poles each particle possesses. But after the particles form rings, the net magnetic effect is zero outside. Tripp developed conditions leading to the self-assembly of the cobalt nanorings, then initiated a collaboration with Dunin-Borkowski to study their magnetic properties. By using a technique known as electron holography, the researchers were able to observe directly the flux-closure states, which are stable at room temperature.

"Magnetic rings are currently being considered as memory elements in devices for long-term data storage and magnetic random-access memory," Wei said. "The rings contain a magnetic field, or flux, which can flow in one of two directions, clockwise or counterclockwise. Magnetic rings can thus store binary information, and unlike most magnets, the rings keep the flux to themselves. This minimizes crosstalk and reduces error during data processing."

When you turn on your computer, it loads its operating system and whatever documents you are working on into its RAM, or random-access memory. RAM is fast, enabling your computer to make quick changes to whatever is stored there, but its chief drawback is its volatility – it cannot perform without a continuous supply of electricity. Many people have experienced the frustration of losing an unsaved document when their computer suddenly crashes or loses power, causing all the data stored in RAM to vanish.

"Nonvolatile memory based on nanorings could in theory be developed," Wei said. " For the moment, the nanorings are simply a promising development."

Preliminary studies have shown that the nanorings’ magnetic states can be switched by applying a magnetic field, which could be used to switch a nanoring "bit" back and forth between 1 and 0. But according to Wei, perhaps the greatest potential for his group’s findings lay in the possibility of combining nanorings with other nanoscale structures.

"Integrating the cobalt nanorings with electrically conductive nanowires, which can produce highly localized magnetic fields for switching flux closure states, is highly appealing." he said. "Such integration may be possible by virtue of self-assembly."

Several research groups have created magnetic rings before but have relied on a "top-down" manufacturing approach, which imposes serious limitations on size reduction.

"The fact that cobalt nanoparticles can spontaneously assemble into rings with stable magnetic properties at room temperature is really remarkable," Wei said. "While this discovery will not make nonvolatile computer memory available tomorrow, it could be an important step towards its eventual development. Systems like this could be what the data storage industry is looking for."

Wei’s group is associated with the Birck Nanotechnology Center, which will be one of the largest university facilities in the nation dedicated to nanotechnology research when construction is completed in 2005. Nearly 100 groups associated with the center are pursuing research topics such as nanometer-sized machines, advanced materials for nanoelectronics and nanoscale biosensors.

Funding for Wei’s research was provided in part by the National Science Foundation and the Department of Defense.

Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu
Source: Alexander Wei, (765) 494-5257, alexwei@purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Chad Boutin | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/031210.Wei.nanorings.html

More articles from Information Technology:

nachricht Terahertz wireless makes big strides in paving the way to technological singularity
19.02.2019 | Hiroshima University

nachricht Gearing up for 5G: A miniature, low-cost transceiver for fast, reliable communications
19.02.2019 | Tokyo Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>